
ELLIPSOMETRY

Stokes’ parameters & related constructs

in optics & classical/quantum mechanics

Nicholas Wheeler, Reed College Physics Department

May 1999

Introduction. Take a sting of length � and pin its respective ends to the points
(+f, 0) and (−f, 0) on the (x, y)-plane. Necessarily 2f � �. Familiarly, the
figure which results from the obvious “taut string condition” is an ellipse:

(x
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)2

+
(y
b

)2

= 1 (1)

where

a = 1
2� is the semi-major axis

b =
√
a2 − f2 = 1

2

√
�2 − 4f2 � a is the semi-minor axis

It is, in view of my present objectives, interesting to recall1 that Maxwell’s first
publication—at fourteen, in the Proceedings of the Royal Society of Edinburgh
—concerned an elaboration of this charming construction (which in practice
does not work very well; it proves difficult to avoid parallax, the string stretches,
pulls out the pins, saws the tip off the pencil).

Now pin one end of the string to the ceiling, and the other to a bob.
You have constructed a pendulum with two degrees of freedom—an isotropic
2-dimensional oscillator—and observe that the bob traces what appears to be
an ellipse, but an ellipse which precesses (and is, when you think about it,
inscribed not on a plane but on a sphere of radius �). The figure has been
rendered this time not by a draftsman, but by God; i.e., by the laws of motion.

Look closely to an illuminated point marked on the plucked E-string of your
double bass and you will observe that it traces a (wandering) ellipse. Circular

1 C. W. F. Everitt, in James Clerk Maxwell: Physicist & Natural Philosopher
(), tells the story (p. 47).
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disks, when viewed obliquely from a distance, appear (in leading approximation)
elliptical, and cast elliptical shadows. Ellipses surround us, in Nature (though
you won’t see many when you walk in the woods) and especially in the world
of our own contrivance. Circles are the exception,2 ellipses—failed circles—the
rule.

In the celestial realm, the realm most distantly removed from our own
contrivance, circles, in their perfection, were for a long time held to prevail.
The reasons were mainly philosophical and æsthetic, though sun and moon
do undeniably present themselves to us as circular disks. So fixated were
natural philosophers on “the circle paradigm” that they were willing to embrace
many-times-nested circles within circles—epicycles—in their effort to account
for the astronomical data.3 Kepler’s 1st Law—his claim that the orbits traced
by planets are in fact not epicyclic but elliptic—was, since it ran counter to
such an entrenched tradition, radically revolutionary; it contained within it a
whole new “natural æsthetic,” and by implication shook to its foundations the
natural philosopher’s sense of how “well-designed worlds” might be constructed.
In one relatively technical sense Kepler’s idea strikes me still as so radical that
in less familiar contexts I might, I confess, be inclined to dismiss such an idea
as “implausible.” For Kepler placed the sun at one focus but nothing at the
other . His proposal embodies a broken symmetry, creates a preferred point
with nothing to do.

Many of the ellipses encountered in scientific work today are what I might
call “mental ellipses,” artifacts of analytical discourse. For example: before
me stands a chair. I have learned to associate with the chair a preferred point
(its center of mass), and a symmetric matrix (the moment of inertia matrix).
Associated with the latter is a crowd of ellipsoids/ellipses, all of which figure
in my understanding of the chair and (were I to throw it out the window)
its motion, but none of which is sensibly present in the chair, evident to the

2 It is, in this light, curious that spheres—whether fashioned by surface
tension, abrasion, central forces or some other agency—are, on the other hand,
ubiquitous.

3 We note in passing that ellipses are, from an epicyclic point of view, highly
unnatural. The obvious model gives

(p cos θ + q cosφ)2

(p+ q)2
+

(p sin θ + q sinφ)2

(p− q)2
= 1

and leads promptly to an equation of the form

4∑
k=0

Ak(θ; p, q) cosk φ = 0

The resulting φ(θ; p, q) is almost too awkward to write out, and certainly not
“pretty enough to be physically plausible.”
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non-analytical eye. To remark that in other contexts it becomes sometimes
more difficult to distinguish
• ellipses evident to the senses from
• ellipses evident only to the prepared mind

is to remark a particular instance of a general circumstance: the distinction
between “real attributes” and “imputed attributes” is—if defensible at all—
frequently not entirely sharp. And it would, in the present instance, be to
belabor a “distinction without a difference,” for all ellipses, whether real or
only imagined, are mathematically identical. It is in that surprisingly rich
mathematics that a remarkable array of physical disciplines acquire a common
interest, and an opportunity for fertile crosstalk. It is that crosstalk which lies
at the center of my interest here, and which will motivate my account of the
mathematics itself.

Whether the ellipses latent in a lightbeam are more—or less—sensible than
those latent in a chair I am in no position to say. But this I can say: position
yourself at inspection point P and, with the aid of a detector of exquisite
resolution, look directly into an on-coming coherent/monochromatic beam.
Maxwellian electrodyamics asserts that you will see4 the mutually orthogonal
E and B vectors to stand normal to the propagation vector k, and to exhibit
this time-dependence:

E(t) =
(

E1 cos(ωt+ δ1)
E2 cos(ωt+ δ2)

)
(2)

With instruments of finite temporal resolution you will, however, detect actually
not E(t) but only the figure which the flying E-vector traces/retraces on the
(E1, E2)-plane. That figure—got by eliminating t between E1(t) and E2(t)—
can be described

E2
2E

2
1 − 2E1E2 cosδ · E1E2 + E2

1E
2
2 = E2

1E
2
2 sin2 δ (3)

δ ≡ δ2 − δ1 ≡ phase difference

or again

1
E2

1E
2
2 sin2 δ

·
(
E1

E2

)T (
E2E2 −E1E2 cos δ

−E1E2 cos δ E1E1

) (
E1

E2

)
= 1 (4)

And this—since

det
(

E2E2 −E1E2 cos δ
−E1E2 cos δ E1E1

)
= E2

1E
2
2(1 − cos2 δ) = E2

1E
2
2 sin2 δ � 0 (5)

—describes an ellipse: the light is said in the general case to be “elliptically
polarized.”

4 No! It asserts that you can use the following language to account for what
you literally see.
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Enter George Gabriel Stokes [–]. Stokes, who read mathematics
while an undergraduate at Cambridge (where he spent his entire career, and
where he became Lucasian Professor of Mathematics at age 30) and is perhaps
best remembered for his mathematical accomplishments (Stokes’ theorem,
Stokes’ phenomenon), but in life drew his mathematical inspiration mainly from
his hands-on experimental activity. His early work was in hydrodynamics, from
which he radiated into acoustics, whence into optics. He made contributions
also to gravimetry and geophysics, meteorology, solar physics, chemistry and
botany, and for many years to the administrative management of the Royal
Society. His optical work, which in the 1840’s related to the physical properties
of the imagined “æther” and to diffractive phenomena, had by about 1851 come
to focus on ellipsometry. The Stokes parameters which are our present concern
were devised by Stokes as an aid to the interpretation of his experimental results,
and were described5 while Maxwell was still an undergraduate—well in advance
of his formulation () of the electromagnetic theory of light. It is, by the way,
a curious fact that Stokes, who worked in so many areas, intentionally avoided
electromagnetism (on the reported grounds that he considered that field to be
well looked after by his good friend, William Thompson); his own approach
to the parameters which bear his name must therefore have been markedly
different from that adopted here; it was, I gather, frankly phenomenological,
and by intention hewed close to the observational face of the physics.6

So Stokes’ parameters (S0, S1, S2, S3) were born of optics, from the
experimental study of polarizational phenomena. But they—together with
certain attendant notions—relate (very usefully, as I hope to demonstrate) to
ellipses generally, including especially those mined from deep below the surface
of the physics. My ultimate objective here will be to explore their relation to
the ellipses that arise from certain dynamical systems (especially oscillatory
systems and the Kepler problem), and thus to reduce the element of mystery
which still clings to some associated conservation laws. But I will allow myself
to explore occasional side trails as we hike toward those intended camping spots.

My title is intended to underscore the potentially broad applicability of
an idea originally introduced by Stokes to solve a rather narrowly conceived
set of problems specific to optics. Optics will concern us, but does not lie
at the focal point of what I have to say. In  Alexandre Rothen coined
the word “ellipsometer” to describe a device of his own invention, a modified
“polarimeter” adapted to the study of thin films,7 but that fact is so little known

5 “On the composition and resolution of streams of polarized light from
different sources,” Trans. Camb. Phil. Soc. 9, 399 (1852).

6 For further details concerning Stokes’ life and work, see C. C. Gillispie
(editor), Dictionary of Scientific Biography (), Volume 13, pp. 74–79. The
introductory “Historical Understanding of Polarized Light” in C. Brosseau,
Fundamentals of Polarized Light: A Statistic Optics Approach serves well to
place Stokes’ accomplishment in broad perspective.

7 E. Passaglia et al (editors), Ellipsometry in the Measurement of Surfaces
and Thin Films: Symposium Proceedings 1963 , NBS Misc. Pub. 256 ().
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that I trust no confusion will result from my intention to use “ellipsometry” to
mean “the mathematics of ellipses—broadly conceived.”

1. Some elementary analytical geometry. Let real 2 × 2 matrices U and R be
defined as follows:

U =
(
u w
w v

)
and R =

(
cosψ − sinψ
sinψ cosψ

)

U is a symmetric matrix, R a proper rotation matrix, and each is typical of its
breed—generic. From

det (U − λI) = λ2 − (u+ v)λ+ (uv − w2) (6)
= λ2 − tr U · λ+ det U

we learn that the eigenvalues of U can be described by the manifestly real
expressions

λ1

λ2

}
=

(
u+v

2

)
±

√(
u−v

2

)2 + w2 (7)

By computation

RTU R =
(
U W
W V

)
(8)

with

U = u cos2 ψ + v sin2 ψ + w2 cosψ sinψ
=

(
u+v

2

)
+

[(
u−v

2

)
cos 2ψ + w sin 2ψ

]
V = u sin2 ψ + v cos2 ψ − w2 cosψ sinψ

=
(
u+v

2

)
−

[(
u−v

2

)
cos 2ψ + w sin 2ψ

]
W = (v − u) cosψ sinψ + w(cos2 ψ − sin2 ψ)

= −
(
u−v

2

)
sin 2ψ + w cos 2ψ

from which it becomes evident that to diagonalize RTU R we have only to set

tan 2ψ =
w

1
2 (u− v)

(9)

For ψ thus determined, the terms which survive on the diagonal of (8) are
precisely the eigenvalues of U, as described by (7):

RTU R =
(
λ1 0
0 λ2

)
(10)
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We conclude that the curve

xT Ux = ux2
1 + 2wx1x2 + vx2

2 = 1

can, by rotation of the coordinate system (write x = Ry), be brought to the
canonical form

λ1 · y2
1 + λ2 · y2

2 = 1

which describes

an ellipse if λ1 and λ2 are both positive
an hyperbola if λ1 and λ2 are of opposite signs

and becomes degenerate in all other cases. We restrict our attention henceforth
to the elliptic case; the results obtained above then admit of the geometrical
interpretation shown in Figure 1.

The so-called “eccentricity”—defined

e ≡ distance between foci
length of major axis

=
f

a
=

√
a2 − b2

a
=

√
1 − (b/a)2 =

√
1 − (λ2/λ1)

—provides a standard measure of the “shape” of an ellipse; one has

eccentricity =
{

0 for fat ellipses (circles)
1 for flat ellipses (line segments)

Another (and for our purposes more useful) measure of shape emerges when
one looks to the population of rectangles which can be circumscribed about a
given ellipse. In the circular case e = 0 these are all squares, of area A = (2a)2

and (semi)diagonal measure d =
√
a2 + a2. In the opposite limit (e = 1) the

circumscribing rectangles assume all possible proportions; they range in area
from A = 0 to A = 1

2a
2 (the latter pertains to the circumscribing square),

but their (semi)diagonal measure—since the ellipse in all cases constitutes the
diagonal—is in all cases the same: d = a =

√
a2 + 02. One can show in the

general case (I won’t, but will let F. L. Griffin8 and Figure 2 tell the story) that

• The rectangles which can be circumscribed about an ellipse all have
the same (semi)diagonal measure d =

√
a2 + b2; their vertices (to say

the same thing another way) all lie on a circle of radius d.

• The rectangle of least area is the “principal rectangle”—the rectangle
aligned with the principal axes of the ellipse. It has area A = 4ab, and
a “shape” of which χ = arctan(b/a) provides a convenient measure.

8 See §264 in F. L. Griffin’s Mathematical Analysis: Higher Course ().



Some elementary analytical geometry 7

λ v u

w

λ

ψ2

Figure 1: Graphical construction of the angle ψ through which the
coordinate system must be rotated in order to achieve(

u w
w v

)
−→

(
λ1 0
0 λ2

)

The figure derives from (9), and forms the basis of what is known to
engineers as “Mohr’s construction.” As u grows smaller λ1 becomes
negative: the elliptic case has become hyperbolic.

Since

d =
√
a2 + b2 serves to characterize the size (12.1)

ψ = 1
2 arctan

{
2w
u−v

}
serves to characterize the orientation (12.2)

χ = arctan
{
b
a

}
serves to characterize the shape (12.3)

of the principal rectangle, they serve to characterize also the ellipse which it
circumscribes. To ellipses which are kinematically/dynamically generated we
must also assign a chirality, indicative of the clockwise/counterclockwise sense
with which we are to consider the ellipse to have been traced in time.

The attentive reader will have noticed that (12.2) is formulated in terms of
the matrix elements of U, while (12.1) and (12.3) refer in effect to the spectral
properties of U. I turn now to the removal of this formal defect. Looking first
to (12.1), we have

d2 = a2 + b2 =
1
λ1

+
1
λ2

=
λ1 + λ2

λ1 · λ2
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Figure 2: Rectangles circumscribed about an ellipse all have the
same diagonal measure d =

√
a2 + b2. The rectangle of least area

is aligned with the principal axes of the ellipse. The shape of the
enveloped ellipse—most commonly described by the “ellipticity”—
can usefully be associated with the shape of the principal rectangle
(slope of its diagonal).

and drawing upon (7) obtain

d2 =
u+ v

uv − w2
=

tr U

det U
(13)

Looking next to (12.3), we have b/a =
√
λ2/λ1 = tanχ, and it becomes

therefore natural to write
λ2/λ1 = tan2 χ

Now a bit of a trick: we recall that

sin 2χ =
2 tanχ

1 + tan2 χ

and use the preceeding result to obtain

sin 2χ = 2
√
λ1 · λ2

λ1 + λ2
= 2

√
det U

tr U
= 2

√
uv − w2

u+ v
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So we have

d =
√

u+ v

uv − w2
(14.1)

tan 2ψ = 2
w

u− v
(14.2)

sin 2χ = 2
√
uv − w2

u+ v
(14.3)

which serve to describe size, orientation and shape (d, ψ and χ) directly in
terms of the matrix elements of U. We are not surprised to notice that size (d)
and shape (χ) can be described in terms of rotationally-invariant properties of
U (i.e., in terms of tr U and det U) while orientation (ψ) cannot be, but are a
bit surprised to notice that[

1
2 (u− v) tan 2ψ

]2 +
[
1
2 (u+ v) sin 2χ

]2 = w2 + (uv − w2)

= uv

=
[
1
2 (u+ v)

]2 − [
1
2 (u− v)

]2
This curious result can be written

(u+ v)2 = (u− v)2 + (u− v)2 tan2 2ψ + (u+ v)2 sin2 2χ

or more simply
S2

0 = S2
1 + S2

2 + S2
3 (15)

provided we use

S0 ≡ ±(u+ v)
S1 ≡ ±(u− v)
S2 ≡ ±(S1 tan 2ψ) = ±2w

S3 ≡ ±(S0 sin 2χ) = ±2
√
uv − w2




(16)

to introduce S-parameters which remain for the moment determined only to
within independent sign specifications. From

S2
1 + S2

2 =




S2
1(1 + tan2 2ψ) = S2

1/(cos 2ψ)2

S2
0 − S2

3 = S2
0(1 − sin2 2χ) = S2

0 cos2 2χ

(which hold for all sign specifications) we obtain

S1 = ±S0 cos 2χ cos 2ψ

whence
S2 = ±(S0 cos 2χ cos 2ψ) tan 2ψ = ±S0 cos 2χ sin 2ψ
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Equations (16) can therefore be formulated

S0 = ±(u+ v)
S1 = ±(u− v) = ±S0 cos 2χ cos 2ψ
S2 = ±2w = ±S0 cos 2χ sin 2ψ

S3 = ±2
√
uv − w2 = ±S0 sin 2χ




(17)

In (17) we have succeeded in associating ellipses of assorted sizes, orientations,
shapes (and, as will emerge, chiralities) with the points of—by (15)— a certain
cone in a nameless place which we might call “4-dimensional S-space”.

In view of (17) it becomes natural to introduce dimensionless9 variables

1 ≡ S1/S0 = ± cos 2χ cos 2ψ

2 ≡ S2/S0 = ± cos 2χ sin 2ψ

3 ≡ S3/S0 = ± sin 2χ


 (18)

which serve to associate ellipses of assorted orientations, shapes but irrespective
of scale with points on a unit sphere in Euclidean 3-space. This representation
—historically the point of departure for an elegantly powerful train of formal
elaborations due to Poincaré10—proves advantageous in situations (and there
are many) in which either
• scale is an irrelevant feature of the ellipses in which we have interest, or
• scale has been set once and for all by some circumstance special to the

application at hand.
The “Poincaré sphere,” in relation to the ellipses it was designed to represent, is
shown in Figure 3, and results from (18) when—which is our option—all signs
are made positive. Note especially that the parameters ψ and χ which describe
elliptic orientation and shape have acquired factors of 2 in their spherical
coordinate interpretations.

We have come at this point to the threshhold—but only the threshhold—
of some wonderful applied mathematics, much of it due to Poincaré, some of
more recent invention. I propose, however, to let the applications motivate the
further development of the theory, and turn now therefore to the optics which
gave birth to this subject.

9 The parameters S are, it will be noted, dimensionally exotic:

[ S ] = dimensionality of u, v and w

= 1
area for ellipses drawn on paper

10 Théorie Mathématique de la Lumière (), Vol. 2, p. 275. We examine
some of the details in §7.
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s

s

s

χ
ψ

χ

ψ

ab

d

X

X

Figure 3: Poincaré sphere: (18) has been used to associate points
in the (ψ, χ)-parameterized space of all oriented ellipses (irrespective
of scale) with points on the unit sphere in 3-dimensional -space. By
“oriented ellipse” I understand an ellipse to which a circulation
sense has been assigned, a “handedness”—geometrical analog of
physical “chirality.”



12 Ellipsometry

PART I: APPLICATIONS TO OPTICS

2. Monochromatic beam description. At (4) we encountered ellipses drawn not
“on paper” but on the electric E-plane—ellipses which can be described(

E1

E2

)T (
u w
w v

) (
E1

E2

)
= 1

with
u = +D · E2E2

v = +D · E1E1

w = −D · E1E2 cos δ


 (19.1)

D ≡ 1/E2
1E

2
2 sin2 δ (19.2)

Returning with this information to (17) we have

S0 = ±D · (E2
2 + E2

1)

S1 = ±D · (E2
2 − E2

1)
S2 = ±D · 2E1E2 cos δ
S3 = ±D · 2E1E2 sin δ

“Stokes’ parameters” are called into being by conventional resolution of the sign
ambiguities and abandonment of the determinental factor D:

S0 = E2
1 + E2

2

S1 = E2
1 − E2

2 = S0 cos 2χ cos 2ψ
S2 = 2E1E2 cos δ = S0 cos 2χ sin 2ψ
S3 = 2E1E2 sin δ = S0 sin 2χ




(20)

“Abandonment of the D-factors” preserves intact the fundamental relation (15),
which now reads

S2
0 = S2

1 + S2
2 + S2

3 (21)

and is motivated by a physical consideration about which Stokes himself could
have had only an inkling: one does not directly “see” the orbit traced out by the
tip of the E-vector; rather, one measures (with a photometer of slow temporal
resolution) the11

optical beam intensity ≡
{

time-averaged rate per unit area with
which energy is delivered to the detector

= 〈Poynting vector: S = c(E × B) 〉
∼ E2

1 + E2
2 for monochromatic beams

11 See electrodynamics (), p. 421.
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It was precisely because the parameters (S0, S1, S2, S3) relate so directly to
the observational realities of optical beams—to the analysis and description
of beams and of the action of devices that transform beams—that they first
recommended themselves to Stokes’ (pre-Maxwellian) intuition.12

To gain some sense of how Stokes’ construction works in the context for
which it was originally intended, consider first the optical signal

E(t) =
(

E1 cos(ωt+ δ1)
0

)

Such a signal is “linearly polarized in the 1-direction.” Since E2 = 0 (relative
phase δ is therefore undefined) the Stokes quartet can, according to (20), be
described

S ≡



S0

S1

S2

S3


 =




E2
1

E2
1

0
0




while the Poincaré vector

≡


S1/S0

S2/S0

S3/S0


 =


 cos 2χ cos 2ψ

cos 2χ sin 2ψ
sin 2χ


 (22)

=


 1

0
0


 in this instance (23.1)

and can, in an obvious sense, be said “to puncture the equator of the Poincaré
sphere at an axial point.” Associated with that point is (see again (12)) an

12 It will become clear as we proceed that Stokes built better than he could
have known. Stokes’ construction, as transmogrified by Poincaré, has revealed
itself to be not only one of the most economically designed and sharpest tools
in the work-a-day optician’s tookchest, but also to be remarkably robust; it
arises in a natural way from statistical optics, and has therefore useful things
to say about the properties of non-idealized “natural” lightbeams. Stokes’
construction anticipates (by more than 70 years!) much that we now recognize
to be most characteristic—both formally and philosophically—of the quantum
theory. Nor is this, in retrospect, too surprising; both optics and quantum
mechanics treat linear systems—systems dominated by a “principle of
superposition”—the observable properties of which are described by quadratic
constructions. The Stokes/Poincaré formalism relates more particularly to the
quantum theory of angular momentum (spin), which is well known to be the
intersection-point of a rich constellation of deep mathematical ideas. For an
excellent brief account of the latter ramifications see §2–8 of J. M. Jauch &
F. Rorhlich, The Theory of Photons & Electrons (), to which I owe my
own first introduction to Stokes’ parameters.
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ellipse whose
shape parameter χ = 0

orientation parameter ψ = 0
(23.2)

which is another way of saying what we assumed at the outset: the beam
is “linearly ←→ polarized.” If the beam were, on the other hand, linearly �
polarized we would have obtained

E(t) =
(

0
E2 cos(ωt+ δ2)

)

giving

S =




E2
2

−E2
2

0
0


 whence =


−1

0
0


 and

{
χ = 0
ψ = 90◦ (24)

The -vectors encountered above puncture the Poincaré sphere at diametrically
opposite points, and—it is important to notice—represent beams which are, in
a familiar sense “oppositely polarized.” Such beams, when superimposed, do
not interfere. Linear polarization in the general case arises from setting δ = 0;
then

E(t) =
(

E1 cos(ωt+ δ1)
E2 cos(ωt+ δ1)

)
(25.1)

gives

S =




E2
1 + E2

2

E2
1 − E2

2

2E1E2

0


 (25.2)

which if we write
E1 = Ecosψ
E2 = E sinψ

(25.3)

becomes

S = E2 ·




1
cos 2ψ
sin 2ψ

0


 (25.4)

giving

=


 cos 2ψ

sin 2ψ
0


 and

{
χ = 0
ψ = arctan (E2/E1)

(25.5)

from which the preceeding examples can be recovered as special cases. Evidently

equatorial points on
the Poincaré sphere

⇐⇒
linearly polarized beams
of all orientations

(26)
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In particular,

=


 0

1
0


 entails

{
χ = 0
ψ = 45◦

To describe a circularly polarized beam we write

E(t) =
(

E cos(ωt+ δ1)
E cos(ωt+ δ1 + δ)

)
and set δ = 90◦ (27.1)

Then

S =




2E2

0
0

2E2


 gives =


 0

0
1


 whence

{
χ = 45◦

ψ = undefined (27.2)

To reverse the sign of δ (i.e., to set δ = −90◦) is to reverse also the sign of the
Poincaré vector (move from the north pole to the south pole of the Poincaré
sphere): physically, to reverse the chirality of the wave. The point of general
interest here is that

The Stokes/Poincaré representations distinguish between ellipses of
identical figure but opposite orientation, and physically between waves
which differ only with respect to their chirality .

While the results reported above do serve to illustrate how simply and
directly Stokes’ parameters relate to what might be called “the state description
problem” for idealized lightbeams, they convey little sense either of the ease
with which the parameters characteristic of a beam can be measured in the
laboratory or of the remarkable variety of the optical problems which their use
serves almost automatically to illuminate—little sense of the “robustness” of
Stokes’ construction, or of its physical “naturalness.” In following sections I
will discuss, in sequence,
• ideas associated with the physical determination of the Stokes parameters

characteristic of a beam;
• an elegant characterization of the action of beam-modification devices;
• the relation of Stokes’ construction to the leading statistical properties of

real lightbeams.

3. Monochromatic beam analysis. Discussion of the first of those topics proceeds
from a couple of very simple physical ideas, but is notable for the mathematical
complexity which tends at every turn to intrude (a complexity which the Stokes
parameters serve in every instance to render transparent). Looking to the first
of those “very simple physical ideas”: polarizers accomplish their work by (i)
resolving the incident beam into components characteristic of the device, and
then (ii) differentially attenuating those components

Ein(t) = Ea(t) + Eb(t) −−−−−−−−→
typical

Eout(t) = ka · Ea(t) + kb · Eb(t)
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The “perfect” polarizers to which we restrict our theoretical attention have the
property that they are transparent to one compontent but extinguish the other

ka = 1 and kb = 0

The action of such idealized devices

Ein(t) = Ea(t) + Eb(t) −−−−−−−−−−−−→
ideal polarizer

Eout(t) = Ea(t) (28)

is, in an evident sense, “projective;” the output of such a device would pass
unaffected through a second (identical) such device. The analytical problem
central to the theory of such devices has to do—as (28) makes clear—with
the identification/description of the relevant “pre-adapted basis.” Suppose,
for example, we had in mind a linear polarizer of arbitrary alignment ψ. Let{
e1, e2

}
and

{
f1, f2

}
—of which the former refers conventionally to what might

be called the “alignment of the lab bench” and the latter to the alignment of
the polarizer—stand in this relatively rotated relationship:

e1 = cosψ · f1 − sinψ · f2
e2 = sinψ · f1 + cosψ · f2

Then

E(t) = [E1 cos(ωt+ δ1)] · e1 + [E2 cos(ωt+ δ2)] · e2

= [E1 cos(ωt+ δ1)] · [cosψ · f1 − sinψ · f2]
+ [E2 cos(ωt+ δ2)] · [sinψ · f1 + cosψ · f2]

= [F1 cos(ωt+ θ1)] · f1 + [F2 cos(ωt+ θ2)] · f2
is found by elementary calculation to entail

F1 cos θ1 = E1 cos δ1 cosψ + E2 cos δ2 sinψ
F1 sin θ1 = E1 sin δ1 cosψ + E2 sin δ2 sinψ
F2 cos θ2 = −E1 cos δ1 sinψ + E2 cos δ2 cosψ
F2 sin θ2 = −E1 sin δ1 sinψ + E2 sin δ2 cosψ


 (29)

Immediately

F2
1 = E2

1 cos2 ψ + E1E2 cos(δ1 − δ2) sin 2ψ + E2
2 sin2 ψ

F2
2 = E2

1 sin2 ψ − E1E2 cos(δ1 − δ2) sin 2ψ + E2
2 cos2 ψ

(30)

so we have

F1 =
√

E2
1 cos2 ψ + E1E2 cos(δ1 − δ2) sin 2ψ + E2

2 sin2 ψ

F2 =
√

E2
1 sin2 ψ − E1E2 cos(δ1 − δ2) sin 2ψ + E2

2 cos2 ψ

θ1 = arctan
{

E1 sin δ1 cosψ + E2 sin δ2 sinψ
E1 cos δ1 cosψ + E2 cos δ2 sinψ

}

θ2 = arctan
{

E1 sin δ1 sinψ − E2 sin δ2 cosψ
E1 cos δ1 sinψ − E2 cos δ2 cosψ

}




(31)
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These equations, though they relate directly to the description of the physical
E-vector, are notable for their surprising complexity. Much simpler relations
result when one looks to certain naturally-emergent quadratic combinations of
physical variables; we notice that

F2
1 + F2

2 = E2
1 + E2

2

F2
1 − F2

2 = (E2
1 − E2

2) cos 2ψ + 2E1E2 cos δ sin 2ψ

2F1F2 cos θ = −(E2
1 − E2

2) sin 2ψ + 2E1E2 cos δ cos 2ψ
2F1F2 sin θ = 2E1E2 sin δ




(32)

It is striking that
{
e1, e2

}
−→

{
f1, f2

}
sets up a linear relationship among

the quadratic constucts in question, and striking also that they are precisely
the constructs to which Stokes has directed our attention; so natural—both
physically and mathematically—has been their emergence that I suspect we
have reproduced here Stokes’ original train of thought. Equations (32) can be
notated 


P0

P1

P2

P3


 =




1 0 0 0
0 cos 2ψ sin 2ψ 0
0 − sin 2ψ cos 2ψ 0
0 0 0 1






S0

S1

S2

S3


 (33)

where (see again (20))

S0

S1

S2

S3


 =




E2
1 + E2

2

E2
1 − E2

2

2E1E2 cos δ
2E1E2 sin δ


 are Stokes’ parameters relative to the e -basis

while

P0

P1

P2

P3


 =




F2
1 + F2

2

F2
1 − F2

2

2F1F2 cos θ
2F1F2 sin θ


 are Stokes’ parameters relative to the f -basis

The action of a linear polarizer whose alignment coincides with that of the
f1-axis is—relative to the f -basis (this being, of course, the whole point of
“basis pre-adaptation”!)—very easy to describe, and has, in effect, already been
described; in essence, F2 −→ 0, which gives

P0

P1

P2

P3




in

−−−−−−−−−−−−−−−−−−−−−−→
polarizer co-aligned with f1-axis




F2
1

F2
1

0
0


 =




1
2 (P0 + P1)
1
2 (P0 + P1)

0
0


 ≡



P0

P1

P2

P3




out

or again 

P0

P1

P2

P3




out

=




1
2

1
2 0 0

1
2

1
2 0 0

0 0 0 0
0 0 0 0






P0

P1

P2

P3




in
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Using (33) to obtain from this a statement referent of the original e -basis we
(after some elementary matrix multiplication) obtain


S0

S1

S2

S3


 −−−−−−−−−−−−−−→

linear polarizer at ψ◦
1
2 [S0 + S1 cos 2ψ + S2 sin 2ψ]




1
cos 2ψ
sin 2ψ

0


 (34)

Of which the following are notable special cases:

S0

S1

S2

S3




in

−−−−−→
ψ=0◦



S0

S1

S2

S3



out

=




1
2 (S0 + S1)
1
2 (S0 + S1)

0
0


=




1
2

1
2 0 0

1
2

1
2 0 0

0 0 0 0
0 0 0 0






S0

S1

S2

S3




in

(35.1)



S0

S1

S2

S3




in

−−−−−→
ψ=45◦



S0

S1

S2

S3



out

=




1
2 (S0 + S2)

0
1
2 (S0 + S2)

0


=




1
2 0 1

2 0
0 0 0 0
1
2 0 1

2 0
0 0 0 0






S0

S1

S2

S3




in

(35.2)

Drawing finally upon (20) we observe, in connection with (34), that

1
2 [S0 + S1 cos 2ψ + S2 sin 2ψ]

= 1
2S0[1 + cos 2χ0(cos 2ψ0 cos 2ψ + sin 2ψ0 sin 2ψ)]

= 1
2S0[1 + cos 2χ0 · cos 2(ψ − ψ0)]

where the subscripted angles refer to the state of the input beam. When the
input beam is already linearly polarized one has χ0 = 0, and in the special case
ψ0 = ψ one easily recovers (25.4); the linear polarizer has in fact accomplished
what it designed to accomplish.

Looking now to the relatively unfamiliar case of circular polarization, we
write

E�(t) = [ 1√
2
A cos(ωt+ α)]e1 − [ 1√

2
A sin(ωt+ α)]e2

E�(t) = [ 1√
2
B cos(ωt+ β)]e1 + [ 1√

2
B sin(ωt+ β)]e2

}
(36)

(which describe circularly polarized beams of opposite chirality) and form

E(t) = E�(t) + E�(t)

= 1√
2

[
(A cosα+ B cosβ) cosωt− (A sinα+ B sinβ) sinωt

]
e1

− 1√
2

[
(A cosα− B cosβ) sinωt+ (A sinα− B sinβ) cosωt

]
e2

Comparison with the more standard representation

E(t) = [E1 cos(ωt+ δ1)]e1 + [E2 cos(ωt+ δ2)]e2

= [E1 cos δ1 cosωt− E1 sin δ1 sinωt]e1 (37)
+ [E2 cos δ2 cosωt− E2 sin δ2 sinωt]e2
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gives
A cosα+ B cosβ =

√
2E1 cos δ1

A cosα− B cosβ =
√

2E2 sin δ2

A sinα+ B sinβ =
√

2E1 sin δ1

A sinα− B sinβ =
√

2E2 cos δ2




(38)

and inversely √
2A cosα = E1 cos δ1 − E2 sin δ2√
2A sinα = E1 sin δ1 + E2 cos δ2√
2B cosβ = E1 cos δ1 + E2 sin δ2√
2B sinβ = E1 sin δ1 − E2 cos δ2




(39)

Working from (38) we obtain

√
2E1 =

√
A2 + 2AB cos γ + B2

√
2E2 =

√
A2 − 2AB cos γ + B2

tan δ1 = +
A sinα+ B sinβ
A cosα+ B cosβ

tan δ2 = −A cosα− B cosβ
A sinα− B sinβ




(40.1)

with γ ≡ α− β, while (39) by similar arguments gives

√
2A =

√
E2

1 + 2E1E2 sin δ + E2
2

√
2B =

√
E2

1 − 2E1E2 sin δ + E2
2

tanα =
E1 sin δ1 − E2 cos δ2
E1 cos δ1 + E2 sin δ2

tanβ =
E1 sin δ1 + E2 cos δ2
E1 cos δ1 − E2 sin δ2




(40.2)

Equations (40) permit interconversion between the “standard representation”
and the “counter-rotational representation“ of E(t); they are notable for their
formal complexity (great simplifications will be achieved in §6), and for the fact
that they make it utterly natural to write (as Stokes was the first to do)

E2
1 + E2

2 = S0 = A2 + B2

E2
1 − E2

2 = S1 = 2AB cos γ
2E1E2 cos δ = S2 = 2AB sin γ

2E1E2 sin δ = S3 = A2 − B2




(41)
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The action of a circular polarizer which passes E� but extinguishes E� is, in
the latter representation, very easy describe (this again being the whole point
of “basis pre-adaptation”); in essence, B −→ 0, which gives (compare (35))


S0

S1

S2

S3




in

−−−−−−−−−−−−→
� polarizer




A2

0
0

A2


 =




1
2 (S0 + S3)

0
0

1
2 (S0 + S3)






S0

S1

S2

S3



out

=




1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2






S0

S1

S2

S3




in

(42)

We are in position now to draw upon the second of the “very simple physical
ideas” mentioned at the beginning of this discussion—an idea which has to do
with the operation not of perfect polarizers but of perfect photometers. Such
devices—which (because I find it convenient to absorb a trivial factor into their
calebration) I shall call “J-meters”—measure the time-averaged energy flux
or intensity of the incident lightbeam; in effect, they examine of the incident
beam {S0, S1, S2, S3} and announce the value of S0. Consider now the following
protocol: a monochromatic beam
• falls unobstructed upon a J-meter, which registers J0;
• is obstructed by a 0◦-linear polarizer while en route to the J-meter, which

registers J1;
• is obstructed by a 45◦-linear polarizer while en route to the J-meter, which

registers J2;
• is obstructed by a �-circular polarizer while en route to the J-meter, which

registers J3;
Drawing upon (35) and (42) we have

J0 = S0

J1 = 1
2 (S0 + S1)

J2 = 1
2 (S0 + S2)

J3 = 1
2 (S0 + S3)

giving
S0 = J0

S1 = 2J1 − J0

S2 = 2J2 − J0

S3 = 2J3 − J0


 (43)

which establishes the direct observability of Stokes’ parameters. We notice
that for monochromatic beams—but not, as will emerge, for statistically more
complex beams—one of the J-measurements can, in fact, be omitted, for

S2
0 = S2

1 + S2
2 + S2

3 ⇒ J2
0 = 2

{
J1(J0 − J1) + J2(J0 − J2) + J3(J0 − J3)

}
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4. Beam manipulation. We have already noted the naturalness and utility of
statements of the form


S0

S1

S2

S3




in

−→



S0

S1

S2

S3




out

=



M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33






S0

S1

S2

S3




in

(44)

When first encountered—at (35.1)—the matrix M was structured in such a way
as to represent the action of a certain linear polarizer. Curiously, it was not
Stokes himself but H. Muller who—in the 1940’s (which is to say: nearly a
century after Stokes laid the foundations of our subject, and half a century
after Poincaré’s elaboration of it)—first appreciated13 how general is the utility
of (49), and worked out (but never published, except to his students at MIT)
the basic implications of this thought:

Just as, and to the same extent that, the Stokes parameters{
S0, S1, S2, S3

}
serve to describe/characterize lightbeams, so

also, and to that same extent, do the Muller matrices M serve
to describe/characterize the beam-modification properties of
optical elements.

The door is thus opened to the creation—as an exercise in applied linear
algebra!—of a “general theory of optical elements,” insofar as the action of the
elements in question has to do with manipulation of the intensity/polarization
characteristics of the transmitted beam.14 It becomes natural to say of elements
that they are “equivalent” if their Mueller matrices are identical. The analysis
of sequenced elements becomes an exercise in matrix multiplication:


S0

S1

S2

S3




out

= Mn · · ·M2M1



S0

S1

S2

S3




in

And attention is directed quite naturally to the formulation of certain
“realizability” conditions; for example, if M is to be realizable as a passive
optical element then it must be the case that

output intensity � input intensity

for all inputs; i.e., that (for all possible assignments of value to
{
S0, S1, S2, S3

}
)

M00S0 +M01S1 +M02S2 +M03S3 � S0

13 That’s the legend, but not quite true; the same idea had been put forward
by P. Soleillet in “Sur les paramètres caractérisant la polarisation partielle de
la lumière dan les phénomènes de florescence,” Ann. Physique 12, 23 (1929),
which nobody read.

14 For the sketched outlines of the general theory to which I allude, see
classical electrodynamics (), pp. 353–363.
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Similar in spirit is this observation: suppose it to be a property of the optical
element we have in mind that

monochromatic input =⇒ monochromatic output

For such elements it will be invariably the case that

(S|S)out = (S|S)in = 0 (45)

where I have adopted the notation

(S|S) ≡ S2
0 − S2

1 − S2
2 − S2

3 =



S0

S1

S2

S3




T

G



S0

S1

S2

S3




where

G ≡




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




Condition (45) imposes upon the elements of M a set of conditions which we
can in these notations express

M TG M = µ · G (46)

where necessarily µ =
√

det M. It is a matter of deep interest (or at least of
curiosity) that (46) serves to define the so-called conformal group, of which
(set µ = 1) the 4-dimensional Lorentz group is an important subgroup. The
latter is, of course, fundamental to special relativity, while the former is (for
that reason) fundamental to the relativistic dynamics of massless particles (of
which photons provide in present context the most natural example; we are,
after all, concerned with the physics of light beams!) and of associated field
theories (most notably electrodynamics). The implications of (46) have, for
these reasons, been exhaustively studied; the wonderful fact is that all of the
resulting large body of mathematical knowledge and technique stands now
instantly available—accidentally, as it were; ready-made and free of charge—to
the theoretical optician. Wonderful also is the fact that

“Experiments in 4-dimensional relativity” (for example:
demonstration of the emergence—actually the optical analog
of the emergence—of “Thomas precessional effects” from the
composition of non-collinear boosts15) can now be carried out

15 The fact that, in the non-collinear case,

(boost) · (boost) = (boost) · (rotational factor)

was missed by Einstein. T. Y. Thomas once told me that he himself learned of
the fact from A. S. Eddington (see p. 99 of his Theory of Relativity ()), but
it appears to have been first noticed either by W. de Sitter or J. A. Schouten.
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on a 1-dimensional optical bench—with nothing in motion
(except, of course, for the lightbeam!).

Though this is not the place for a systematic account of what has come to
be called the “Muller calculus,” I would, by way of illustration, like to return
briefly to the Muller matrix

P ≡




1
2

1
2 0 0

1
2

1
2 0 0

0 0 0 0
0 0 0 0




By quick calculation P TG P = O, which by det P = 0 is consistent with (46).
Quick calculation establishes also that P is projective in the sense that P2 = P.
From det(P − λI) = (λ− 1)λ3 we learn that P has eigenvalues

{
1, 0, 0, 0

}
, and

conclude that P projects onto a 1-dimensional subspace of 4-dimensional Stokes
space; actually—this being, in fact, an implication of (35.1)—

P projects onto the ray S ·




1
1
0
0




In physical language, P is the Muller matrix representative of a “polarizer”
of such design that it is transparent to (and only to) incident beams of type{
S, S, 0, 0

}
. One should, of course, not draw from this single example the

conclusion that all optical elements are by nature “polarizers.” The Muller
matrix

M =



k 0 0 0
0 k 0 0
0 0 k 0
0 0 0 k




—realizable as a passive device if and only if 0 � k � 1—is consistent with
(46) but non-projective (therefore not a polarizer), and describes the action of
a “neutral filter.” Non-projective Muller matrices of the type

M =




1 0 0 0
0 R11 R12 R13

0 R21 R22 R23

0 R31 R32 R33




( R is a 3×3 rotation matrix: RT R = I ) have the property that they in all cases
preserve the intensity of the transmitted beam; their action is to accomplish a
rotation of the Poincaré sphere. Such “rotators” are transparent to beams of
the description(

S0

S

)
where

{S is the real eigenvector of R : RS = S
S0 =

√
S···S provides radian measure of the rotation

Ŝ identifies the “rotational axis” in Stokes space

and their physical realizations are called “retarders.”16

16 See E. Hecht, Optics (2nd edition, ), §8.7.
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5. Quasi-monochromatic beams. We have proceeded thus far on the basis
of the unrealistic presumption that “monochromatic lightbeams”—beams in
which the E-vector traces and with perfect regularity retraces ellipses of perfect
precision—provide reasonable approximations to the lightbeams encountered in
optical laboratories. And it was the elementary physics of such idealized beams
that led to the introduction of Stokes’ parameters, and to their illustrative
application. But in point of physical fact the beams encountered in laboratories
are complex entities, describable as superpositions of monochromatic beams,
but more usefully thought of as trains of superimposed pulses. On a time scale
short in comparison to its “coherence time” the physical beam will present the
aspect of a monochromatic beam, but as pulses are replaced by successor pulses
the variables E1,E2, δ1, δ2 will acquire a time-dependence—slow relative to the
coherence time, but fast relative to the response time of a photometer. The
ellipse traced by the E(t)-vector will be seen (or would be, if only our eye were
quick enough) to undergo slow deformation, to degenerate into a fuzzy figure
which may remain “somewhat elliptical on the average” but may retain no
detectable structure at all. Such a beam, since it contains necessarily Fourier
components of various frequencies, cannot properly be called “monochromatic.”
But if the bandwidth is sufficiently narrow then one can expect to be able to
write (compare (2))

E(t) =
(

E1(t) cos(ωt+ δ1(t))
E2(t) cos(ωt+ δ2(t))

)
(47)

to describe the “slow meander of the path traced by the rapidly flying spot.”17

Lightbeams which in acceptable approximation admit of such description are
said to be “quasi-monochromatic.” The ideas put forward by Stokes are (as it
happens) “robust” in the sense that they extend naturally—and very
informatively—to the physics of quasi-monochromatic beams. Suppose, for
example, that such a beam were subjected to the beam-analysis protocol
described previously; then in place of (20/43) we would have

S0 = 〈J0〉 = 〈E2
1〉 + 〈E2

2〉
S1 = 2〈J1〉 − 〈J0〉 = 〈E2

1〉 − 〈E2
2〉

S2 = 2〈J2〉 − 〈J0〉 = 2〈E1E2 cos δ〉
S3 = 2〈J3〉 − 〈J0〉 = 2〈E1E2 sin δ〉




(48)

17 Which, it is useful to notice, might be the literally flying spot traced on an
oscilloscope screen when

horizontal input = E1 cos(ωt+ δ1) + noise
vertical input = E2 cos(ωt+ δ2) + noise

We are, from this point of view, concerned with the description of a simple class
of jiggly Lissajous figures.
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where I have used angle-brackets to denote the time averages of the quantities
in question:

〈F 〉 ≡ lim
T→∞

1
T

∫ T

0

F (t) dt

Under familiar conditions one can, in such contexts, invoke the so-called ergodic
hypothesis (which is to say, one can—and frequently very usefully—replace time
averages by ensemble averages) to write

=
∫

Fp(F ) dF

Returning with this idea to (48), we find ourselves talking about the statistical
properties of the quasi-monochromatic beam. Evidence that Stokes’ parameters
are, if not by initial intent, nevertheless wonderfully well-adapted to discussion
of the dominant statistical properties of lightbeams emerges from the following
little argument: working from (48) we have

S2
0 = 〈E2

1〉2 + 2〈E2
1〉〈E2

2〉 + 〈E2
2〉2 (49.1)

S2
1 + S2

2 + S2
3 = 〈E2

1〉2 − 2〈E2
1〉〈E2

2〉 + 〈E2
2〉2 + 〈2E1E2 cos δ〉2 + 〈2E1E2 sin δ〉2

= S2
0 + 4

{
〈E1E2 cos δ〉2 + 〈E1E2 sin δ〉2 − 〈E2

1〉〈E2
2〉

}
(49.2)

But if x and y are any random variables (however distributed) then from
〈(λx + y)2〉 = λ2〈x〉2 + 2λ〈xy〉 + 〈y〉2 � 0 (all λ) it follows that in all cases
〈xy〉2 � 〈x2〉〈y2〉, so we have

〈E1E2 cos δ〉2 � 〈E2
1〉〈E2

2 cos2 δ〉
〈E1E2 sin δ〉2 � 〈E2

1〉〈E2
2 sin2 δ〉

giving

S2
1 + S2

2 + S2
3 ≤ S2

0 + 4
{
〈E2

1〉〈E2(cos2 δ + sin2 δ)2〉 − 〈E2
1〉〈E2

2〉
}︸ ︷︷ ︸

0

We are led thus to the important inequality

(S|S) ≡ S2
0 − S2

1 − S2
2 − S2

3 � 0 (50)

with equality if (but not only if!) the beam is literally monochromatic.
Equivalently, ··· � 1: the “Poincaré 3-vector” (see again (22)) lies generally
interior to the Poincaré sphere, and reaches to the surface of the Poincaré
sphere only if the beam is, in a fairly evident sense, statistically equivalent to a
monochromatic beam.
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If E1, E2 and δ are statistically independent random variables then we can
in place of (48) write

S0 = 〈J0〉 = 〈E2
1〉 + 〈E2

2〉
S1 = 2〈J1〉 − 〈J0〉 = 〈E2

1〉 − 〈E2
2〉

S2 = 2〈J2〉 − 〈J0〉 = 2〈E1〉〈E2〉〈cos δ〉
S3 = 2〈J3〉 − 〈J0〉 = 2〈E1〉〈E2〉〈sin δ〉

If, moreover, all δ -values are equally likely, then 〈cos δ〉 = 〈sin δ〉 = 0, and we
have S2 = S3 = 0. If, moreover, 〈E1〉 = 〈E2〉 then S1 = 0. The resulting beam




1
0
0
0


 is said to be unpolarized: = 0

It becomes on this basis natural to introduce the

“degree of polarization” P ≡
√
S2

1 + S2
2 + S2

3

S0
= | | (51)

and to write

S0

S1

S2

S3


 =



PS0

S1

S2

S3


 +




(1 − P )S0

0
0
0




= polarized component + unpolarized component

When an unpolarized beam is presented to (for example) the linear polarizer of
(35.1) one obtains



S0

S1

S2

S3




in

−−−−−−−−−−−−−−−−→
linear polarizer at 0◦



S0

S1

S2

S3




out

=



S0/2
S0/2

0
0


=




1
2

1
2 0 0

1
2

1
2 0 0

0 0 0 0
0 0 0 0






S0

0
0
0




in

Pin = 0 (the input beam is unpolarized) but Pout = 1: the output beam is 100%
polarized. Evidently the Muller calculus shares the ”robustness” of the Stokes
representation upon which it is based.

We are in position now to appreciate the import of Stokes’

Principle of Optical Equivalence: Lightbeams with identical
Stokes parameters are “equivalent” in the sense that they
interact identically with devices which detect or alter the
intensity and/or polarizational state of the incident beam.
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and the depth of his insight into the physics of light. But one does not say
of objects that they are, in designated respects, “equivalent” unless there exist
other respects—whether overt or covert—in which they are at the same time
inequivalent; implicit in the formulation of Stokes’ principle is an assertion
that physical light beams possess properties beyond those to which the Stokes
parameters allude, properties to which photometer-like devices are insensitive.
There are many ways to render a page gray with featureless squiggles, many
ways to assemble an unpolarized light beam. What such beams, such statistical
assemblages share is, according to (48), not “identity” but only the property
that a certain quartet of numbers arising from their low-order moments and
correlation coefficients are equi-valued. Nor is this remark special to unpolarized
beams; it pertains as well to beams in general: monochromaticity implies but is
not implied by P = 1. The optical situation here brought to light is reminiscent
of that encountered in (for example) the dynamics of rigid bodies, where the
0th, 1st and 2nd moments

M =
∫

µ(x) d3x total mass

X = 1
M

∫
xµ(x) d3x center of mass

Ijk =
∫

(xj −Xj)(xk −Xk)µ(x) d3x moment of inertia matrix

but not the higher moments of the mass distribution µ(x) enter into the
equations of motion; the latter come into play only to the extent that the rigid
body moves responsively to the higher derivative structure of some ambient
field. So it is in optics. We have, in effect, been alerted by Stokes to the
existence of a “statistical optics”—to the possibility that instruments (more
subtle in their action than photometers) might be devised which are sensitive
to higher moments of an incident optical beam. And we have been alerted
to the possible existence and potential usefulness of an ascending hierarchy of
“higher order analogs” of the parameters which bear Stokes’ name, and which
do in all events serve to capture the dominant statistical properties of optical
beams. Examination of the literature18 shows all those expectations to be borne
out by fairly recent developments. It becomes interesting in the light of these
remarks to recall the title of the paper in which the Stokes parameters were
first described: “On the composition and resolution of streams of polarized
light from different sources” (Trans. Camb. Phil. Soc. 9, 399 (1852)).

6. The Jones calculus. The material developed in recent sections is associated
primarily with the names of Stokes and Muller. I turn now to review of work
associated with the names of H. Poincaré (whose contributions to the field were

18 See, for example, E. L. O’Neill, Introduction to Statistical Optics ();
J. W. Simmons & M. J. Guttmann, States, Waves and Photons: A Modern
Introduction to Light (); C. Brosseau, Fundamentals of Polarized Light: A
Statistical Optics Approach ().
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forty years subsequent to those of Stokes) and of R. Clark Jones (whose work,
performed while an undergraduate employed in the laboratory of Edwin Land,
was contemporaneous with that of Muller)—work notable for the persistent
intrusion of i =

√
−1, and which serves, both algebraically and analytically, to

deepen our understanding of the material already in hand. In a sense, we will for
the most part be decanting old wine into elegant new bottles. But quite apart
from the æsthentic satisfaction to be derived from such activity, it will be found
to cast old physical relationships in interesting new light, to give rise to new
computational techniques, and—which for us is the ultimate point of this whole
exercise—to establish direct contact with concepts and methods basic to fields
seemingly quite remote from optics. I look to Jones and Poincaré in reversed
historical sequence, which is to say: in order of descending mathematical depth.
Nothing that Jones had to say would, I think, have been news—fifty years
earlier—to Poincaré.

In view of (2) it is entirely natural to introduce

EEE(t) = EEE · eiωt (52.1)

where

EEE ≡
(

E1e
iδ1

E2e
iδ2

)
= E1e

iδ1e1 + E2e
iδ1e2 (52.2)

defines the so-called “Jones vector” of the monochromatic beam in question.
One recovers the physical wave (2) by extraction of the real part of the complex
construction (52); here as generally, the “complexification trick” owes its success
largely to the fact that

real part of superposition = superposition of real parts

The Stokes parameters (20) are, however, quadratic in the field amplitudes, and
of course

square of sum �= sum of squares

But if we write
EEE
† ≡ conjugate transpose of EEE

then we have

S0 = EEE
†

S0 EEE with S0 ≡
(

1 0
0 1

)

S1 = EEE
†

S1 EEE with S1 ≡
(

1 0
0 −1

)

S2 = EEE
†

S2 EEE with S2 ≡
(

0 1
1 0

)

S3 = EEE
†

S3 EEE with S3 ≡
(

0 −i
i 0

)




(53)
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where the 2 × 2 matrices Sµ—familiar19 to the quantum mechanical world as
“Pauli matrices”—are hermitian and possess (amongst others) the following
notable properties:

tr S0 = 2 but tr S1 = tr S2 = tr S3 = 0 (54)

S0 · S0 = S0

S0 · Sj = Sj · S0 = Sj (55)
Sj · Sk = δjk S0 + i

3∑
l=1

εjkl Sl

The S -matrices span the space of 2 × 2 hermitian matrices in the sense that
the most general such matrix can be developed

H =
(
h0 + h1 h2 − ih3

h2 + ih3 h0 − h1

)
= h0

S0 + h1
S1 + h2

S2 + h3
S3 (56.1)

Moreover
hµ = 1

2 tr ( Sµ H) (56.2)

since it is an implication of (54) and (55) that the S -matrices are trace-wise
orthonormal in the sense that

1
2 tr ( Sµ Sν) = δµν (57)

From
det( Sk − λ I) = (λ+ 1)(λ− 1) : k = 1, 2, 3

we see that S1, S2 and S3 have identical spectra: λ = ±1. The equations

S11+ = +1+ with 1+ ≡
(

1
0

)

S11− = −1− with 1− ≡
(

0
1

)

S22+ = +2+ with 2+ ≡ 1√
2

(
1
1

)

S22− = −2− with 2− ≡ 1√
2

(
1

−1

)

S33+ = +3+ with 3+ ≡ 1√
2

(
1
i

)

S33− = −3− with 3− ≡ 1√
2

(
1

−i

)




(58)

19 Except notationally: my non-standard BLACKBOARD notation is responsive
to an anticipated need to distinguish matrices from the operators of which they
provide particular representations. More standardly: Latin indices will range on{
1, 2, 3

}
, Greek indices on

{
0, 1, 2, 3

}
, and the Einstein summation convention

will be in force.
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assign detailed meaning to the generic equation Skk± = ±k±. The vectors{
k+,k−

}
are, for each of the three values assignable to k, orthogonal, and

since we have taken the trouble to normalize them they are in fact orthonormal

k†
+k+ = k†

−k− = 1

k†
+k− = k†

−k+ = 0
(59)

and complete
I = k+k†

+ + k−k†
− (60)

Each of the S -matrices serves, in short, to inscribe on complex 2-space—the
vector space in which EEE -vectors live, and upon which our 2 × 2 matrices act—
an orthonormal basis. Each of the S -matrices is diagonal in its own basis

Sk = k+k†
+ − k−k†

− (61)

The matrices/vectors encountered above refer in a particular representation
to a more abstract scheme, which I have now to sketch: the fundamental objects
are hermitian Pauli operators σ0 ≡ I and σk which act on C2 and conform to
algebraic relations (55)

σj · σk = δjk I + i

3∑
l=1

εjkl σl (62)

which entail [σj ,σk] = 2εjkl σl. Methods borrowed from the quantum theory
of angular momentum (spin) supply representation-independent proof that the
operators σk have identical spectra λ = ±1 (and are therefore traceless). In
Dirac’s elegant notation we have

σk|k,+) = +|k,+)
σk|k,−) = −|k,−)

(63)

It is relative to the eigenbasis of σ1 that—tacitly—we worked in the preceding
paragraph, and it is by writing

|E) = E1e
iδ1 |1,+) + E2e

iδ2 |1,−) (64)

that we bind the formalism to its concrete physical interpretation. Abstractly
we have the representation-independent statements

S0 = (E|σ0|E)
S1 = (E|σ1|E)
S2 = (E|σ2|E)
S3 = (E|σ3|E)


 (65)



Jones calculus 31

which, if
{
|α), |β)

}
comprise an arbitrary orthonormal basis, acquire the form

Sµ =
(

(E|α)
(E|β)

)T (
(α|σµ|α) (α|σµ|β)
(β|σµ|α) (β|σµ|β)

) (
(α|E)
(β|E)

)
(66)

typical of a specific matrix representation, and if, more particularly, we set{
|α) = |1,+), |β) = |1,−)

}
we recover (53):

Sµ = EEE
†

Sµ EEE

The utility of the abstract formalism lies in the relative ease with which it
permits us to move from one representation to another, which I will illustrate by
example. . .but by way of preparation: in our “base representation” (eigenbasis
of σ1), plucking descriptions of the six vectors k± from (58), we have

(
E1e

iδ1

E2e
iδ2

)
=




1+ when we set E1 = 1, δ1 = 0,E2 = 0, δ2 arbitrary
1− when we set E1 = 0, δ1 arbitrary,E2 = 1, δ2 = 0

2+ when we set E1 = 1/
√

2, δ1 = 0,E2 = 1/
√

2, δ2 = 0
2− when we set E1 = 1/

√
2, δ1 = 0,E2 = 1/

√
2, δ2 = π

3+ when we set E1 = 1/
√

2, δ1 = 0,E2 = 1/
√

2, δ2 = +π/2
3− when we set E1 = 1/

√
2, δ1 = 0,E2 = 1/

√
2, δ2 = −π/2

according to which (by (20))

1+ refers in the σ1-eigenbasis to ←→
1− refers in the σ1-eigenbasis to �
2+ refers in the σ1-eigenbasis to ↗↙
2− refers in the σ1-eigenbasis to ↖↘
3+ refers in the σ1-eigenbasis to �
3− refers in the σ1-eigenbasis to �




(67)

By a convention which I find backwards, clockwise circulation � is said by
opticians (and by the designer of AMS -TEX, who assigned to the symbol � the
code \circlearrowright ) to be “right-handed,” and � to be lefthanded.

To change basis, one proceeds in direct mimicry of standard quantum
mechanical practice, writing

|E) =
∑

|α)(α|E) (68.1)
(α|E) =

∑
(α|α̃)(α̃|E) (68.2)

More concretely, (
(α|E)
(β|E)

)
=

(
(α|α̃) (α|β̃)
(β|α̃) (β|β̃)

) (
(α̃|E)
(β̃|E)

)
(69)

↓
EEE = U ẼEE
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Suppose, for example, that{
|α), |β)

}
refer, as above, to the σ1-eigenbasis ←→, �{

|α̃), |β̃)
}

refer to the σ3-eigenbasis � , �

Then, reading from (58), we have

|α̃) = |α)(α|α̃) + |β)(β|α̃)

= 1√
2

{
|α) · 1 + |β) · i

} |β̃) = |α)(α|β̃) + |β)(β|β̃)

= 1√
2

{
|α) · 1 − |β) · i

}
giving

U = 1√
2

(
1 1
i −i

)
(70.1)

and so obtain

S0 = (E|σ0|E) = EEE
†
S0EEE = ẼEE

†
S̃0ẼEE with S̃0 ≡ U†

S0U = S0

S1 = (E|σ1|E) = EEE
†
S1EEE = ẼEE

†
S̃1ẼEE with S̃1 ≡ U†

S1U = S2

S2 = (E|σ2|E) = EEE
†
S2EEE = ẼEE

†
S̃2ẼEE with S̃2 ≡ U†

S2U = S3

S3 = (E|σ3|E) = EEE
†
S3EEE = ẼEE

†
S̃3ẼEE with S̃3 ≡ U†

S3U = S1




(70.2)

and

ẼEE = U†EEE = 1√
2

(
E1e

iδ1 − iE2e
iδ2

E1e
iδ1 + iE2e

iδ2

)
(70.3)

≡
(

Aeiα

Beiβ

)
: reproduces (39)

So
S0 = A2 + B2

S1 = 2AB cos γ : γ ≡ β − α

S2 = 2AB sin γ

S3 = A2 − B2




(70.4)

We have in (70.3) achieved a wonderfully succinct rendition of (39), and have
in (70.4) recovered (41), but by a more transparent argument, and with a lot
less labor.

The matrix U is unprepossessing on its face, but has in fact an interesting
story to tell. The point to notice is that det U = −i so U, though unitary, is
not unimodular; it becomes, in this light, natural20 to write

U =
√
−i · 1

2 (1 + i)
(

1 1
i −i

)
︸ ︷︷ ︸
unimodular factor

20 Observe that
√
−i = e−i

π
4 and e+i

π
4 = 1√

2
(1 + i).
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and to notice that

unimodular factor = 1
2

(
1 + i 1 + i

−1 + i 1 − i

)

= 1
2

{(
1 0
0 1

)
+ i

(
1 0
0 −1

)
+ i

(
0 1
1 0

)
+ i

(
0 −i
i 0

)}
= 1

2 S0 + i
√

3
2

{
1√
3

S1 + 1√
3

S2 + 1√
3

S3

}

= exp
{
iπ3

[
λ1 S1 + λ2 S2 + λ3 S3

]}
with λ ≡


 1

1
1


 (71)

is precisely the element of SU(2) which is associated21 with the element of O(3)
that refers to rotation through 2π

3 radians (120◦) about the unit vector λ. The
induced action of U in 3-dimensional -space can be described

 1
0
0


 →


 0

1
0


 ;


 0

1
0


 →


 0

0
1


 ;


 0

0
1


 →


 1

0
0




as foreshadowed at (70.2).

Except for the fact that no condition of the form (E|E) = 1 is operative,
equations (65) very much resemble the equations which in quantum mechanics
are used to compute “expectation values.” It becomes natural in the light of
this remark to notice that (65) admit of this alternative formulation:

Sµ = tr (σµb) where b ≡ |E)(E| (72)

Since the “beam operator” b is hermitian on C2 it can be developed as a linear
combination of σ-operators, and from

Sµ = tr (σµ
∑
ν

bνσν) =
∑
ν

bνtr (σµσν) = 2
∑
ν

bνδµν = 2bµ

we learn that Stokes’ parameters are essentially the “coordinates” of b; we have
the association

|E) ←→ b = 1
2

{
S0σ0 + S1σ1 + S2σ2 + S3σ3

}
(73)

The Jones vector |E) and the beam operator b are equivalent in the sense that,
for all hermitian “observables” A,

〈A〉E = (E|A |E) = tr (Ab) (74)

but they are inequivalent in this weak respect:

b is invariant under |E) −→ eiα|E)

21 See, for example, classical dynamics, (), Chapter 1, p. 118.
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b is, in short, sensitive to relative phase δ ≡ δ2 − δ1 but insensitive to the
absolute phase of the physical wave—as also, for that matter, is 〈A〉E . In repre-
sentation with respect to any specified coordinate system the “beam operator”
becomes the “beam matrix:”

b becomes 1
2

(
S0 + S1 S2 − iS3

S2 + iS3 S0 − S1

)
in standard representation (75)

where—here as always—by “standard representation” I presume selection of
the σ1-eigenbasis; I refer, in other words, to the ←→� “linear polarization”
representation, with respect to which the representatives of the σ-operators
become the Pauli matrices (53). The following equations are immediate in the
standard representation

trb = S0 (76.1)
detb = S2

0 − S2
1 − S2

2 − S2
3 (76.2)

but hold in all unitarily equivalent representations, and it is for that reason
that the expressions on the left become meaningful as written.

Insight into the nature of the density matrix, in its present manifestation,
can be obtained as follows: from |E)(E| · |E)(E| = |E)S0(E| we conclude that

b2 = S0b (77)

It is, on the other hand, an implication of the Cayley-Hamilton theorem that
b2 − (trb)b + (detb) I = 0 which by (76) reads

b2 = S0b − (S2
0 − S2

1 − S2
2 − S2

3) I (78)

Comparison of (77) with (78) returns the familiar information that (for
monochromatic beams)

S2
0 − S2

1 − S2
2 − S2

3 = 0

With the consistency of (77) and (78) thus established, we discover that

P ≡ 1
S0

b is a projection matrix : P2 = P (79)

Explicitly

P = |Ê)(Ê| where |Ê) ≡ 1√
S0

|E) is normalized : (Ê|Ê) = 1 (80.1)

= 1
2

{
σ0 + s1σ1 + s2σ2 + s3σ3

}
(80.2)

where (as previously) sk ≡ Sk/S0. From det( P−λ I) = λ(λ−1) we learn that P
projects onto a 1-dimensional subspace of C2 (i.e., that p projects onto a ray).
Evidently

P⊥ ≡ I − P (81.1)
= 1

2{σ0 − s1σ1 − s2σ2 − s3σ3} (81.2)
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projects onto the orthogonal complement of that ray, and in
{
P,P⊥

}
we have

a complete (P + P⊥ = I) orthogonal (P···P⊥ = 0) set of projection operators
(P2 = P and P2

⊥ = P⊥ ). As to the identity of the ray onto which P projects, it is
clear from (80.1) that P|E) = |E): P projects onto the ray which contains (and
is defined by) the Jones vector |E). If |Ê)⊥ denotes the unit vector normal to
|Ê)22

(Ê|Ê) = ⊥(Ê|Ê)⊥ = 1 and (Ê|Ê)⊥ = 0

then
P |Ê) = |Ê) P |Ê)⊥ = 0

P⊥|Ê) = 0 P⊥|Ê)⊥ = |Ê)⊥

While the assembly ( |E) −→ b) of b for given |E) is by (72) made trivial,
the reverse procedure ( |E) ←− b) is not quite trivial, but (as we have just
learned) soluble as follows: (i) compute S0 = trb; (ii) construct P ≡ b /S0;
(iii) construct the eigenvector |E) defined by P |E) = |E) and (iv) impose the
normalization condition (E|E) = S0. The resulting |E) is determined to within
an overall phase factor .

It is interesting to note that, while |E) and its complement |E)⊥ are
orthogonal , they give rise in Stokes’ representation to -vectors which are
(compare (80.2) with (81.2)) anti-parallel ; such is the variety of the languages
available to us when we wish to refer to states of “opposite polarization.”

To describe the beam-modification properties of linear devices, Jones found
it natural to write

|E)in −→ |E)out = J |E)in (82)

Equivalent (except of the abandonment of an overall phase factor) is

bin −→ bout = Jbin J† (83)

where J† is the adjoint of J. Equations (82) and (83) are to be compared to
(44); clearly, the Jones calculus is situated in complex 2-space, and speaks of
the blackbox adventures of the physical wave itself, while the Muller calculus
is situated in a real 4-space, and speaks only/directly of the the observable
properties of the physical wave. Returning with (82) to (65), we obtain


S0

S1

S2

S3




in

=




(E|σ0|E)
(E|σ1|E)
(E|σ2|E)
(E|σ3|E)


 −→




(E|J†σ0J|E)
(E|J†σ1J|E)
(E|J†σ2J|E)
(E|J†σ3J|E)


 =



S0

S1

S2

S3




out

(84)

The hermiticity of σµ implies that of J†σµJ, so we are assured of the existence
of real numbers Mµν such that

J†σµJ =
3∑
ν=0

Mµνσν (85.1)

22 I say the but mean a; such things are defined only to within a phase factor.
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—numbers which are given in fact by

Mµν = 1
2 tr (J†σµJσν) (85.2)

Thus do we recover precisely (44), from which the Muller calculus radiates. In
a manner of speaking

Jones calculus =
√

Muller calculus

but while it is (as we have just witnessed) typically easy to square things, the
extraction of roots frequently demands a high order or ingenuity; it is only by
force of fairly deep analysis that one is led from Muller-like structures to the
invention of—or to an appreciation of the naturalness of—Jones-like structures.

We have observed already that to catalog the properties of the Muller
matrices M is, in effect, to construct a “general theory of linear optical devices.”
The same can be said of the Jones operators J (which in representation become
2×2 Jones matrices J ). But while those distinct exercises lead necessarily to the
same ultimate conclusions, they differ markedly in their details. Suppose, by
way of illustration, that the device in question is non-absorptive: to impose such
a condition is, by (84), is to require that (S0)out = (E|J†J|E) = (E|E) = (S0)in
for all |E), and amounts therefore to a requirement that J be unitary:

J = ei(phase) · ei(λ1σ1+λ2σ2+λ3σ3)

Returning with this information to (85) one at length recovers the previously
encountered

M =




1 0 0 0
0 R11 R12 R13

0 R21 R22 R23

0 R31 R32 R33




as an instance of the famous SU(2) representation—the “spinor representation”
—of O(3). Or consider the class of devices called “polarizers.” The action
of such devices is, as we have observed, projective (in which fundamental
respect they serve to model the action of all quantum mechanical measurement
devices !). If (p1, p2, p3) are components of a unit 3-vector, the Stokes vector
descriptive of the output of the polarizer, then it was seen already at (80.2)
that the associated Jones operator can be described

Jpolarizer = 1
2

{
σ0 + p1σ1 + p2σ2 + p3σ3

}
This simple result could—with labor—be used in conjunction with (85) to
construct, in identical generality, a discription of the Muller matrices associated
with such devices. As the preceeding examples suggest, the Jones calculus is in
many applications notable for its computational efficiency.23

23 For further discussion of the practical particulars of the subject, see (for
example) Chapter 10 of Edward Collett’s Polarized Light: Fundamentals &
Applications ().
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Jones’ work will fill quantum physicists—as it must have already in —
with a distinct sense of déjà vu,24 for the mathematical ideas which he pressed
into optical service have/had for a long time been standard to the quantum
mechanics of 2-state systems (spin systems). But that’s alright; the recognition,
whenever it occurs, that seemingly distinct subjects are (like quantum field
theory and statistical mechanics) structurally similar is invariably empowering
to students of both subjects.

7. Poincaré’s contribution. The alternative formalisms sketched thus far are
equivalent only insofar as they overlap. And the enhanced “computational
efficiency” we have achieved has been purchased at a price: by progressive
abandonment physical detail—which has been the pattern of our progress

|E) −−−−−−−−−−−−−−−−−−−−→
loss of absolute phase data

b

and 

S0

S1

S2

S3


 −−−−−−−−−−−−−−−−→

loss of intensity data
≡


S1/S0

S2/S0

S3/S0


 ≡


 s1
s2
s3




—we find ourselves speaking ever more sharply about less and less. So the trend
now continues. . . though, it might be argued, in service more of sheer elegance
than of analytical power.

The Poincaré sphere—which lives in 3-dimensional Stokes space and is
defined by the equation ··· = 1—is useful when one has interest only in (the
action of sequenced devices upon) the figure (orientation, shape and chirality)
of the electrical ellipse; when one has, that is to say,
• no interest in the scale/size of the ellipse, and
• no interest in partial polarization (represented by points interior to the

“Poincaré ball”).
But within that limited context it is quite useful; its elegant ramifications
radiate in several directions, of which I look now to only one.

By stereographic projection from the “north pole” of the Poincaré sphere
(i.e., from the point (0, 0, 1), which is the circular polarization point �) onto

24 Perusal of his papers suggests that is was, however, not déjà vu to Jones.
In “A new calculus for the treatment of optical systems, Part I: Description
and discussion of the calculus,” J. Opt. Soc. Am. 31, 488 (1941) he does cite
quantum texts by E. C. Kemble () and by V. Rojansky () as sources for
his matrix theory, but nowhere in eight papers spread over fifteen years does he
mention a Pauli matrix or a spinor, or show evidence of any close knowledge of
quantum mechanics. The work of Stokes, Soleillet and Mueller is mentioned for
the first (and only) time in “Part V: A more general formulation, & description
of another calculus.” J. Opt. Soc. Am. 37, 107 (1947), and his solitary
reference to Poincaré (Part II) is similarly cursory. Jones’ papers—all written
from the Polaroid Corporation—impress me as the work of an exceptionally
inventive young engineer with an aversion to the literature.
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the equatorial plane (defined by the equation S3 = 0) one sets up a one-to-one
correspondence between points on the surface of the sphere and points

{
u, v

}
on

the plane, which step one Poincaré proceeds to associate with the complex
plane. Working from Figure 4, we are led quickly to the “Poincaré polarization
parameters”

u ≡ s1
1 − s3

v ≡ s2
1 − s3


 (86)

Inversely

s1 =
2u

u2 + v2 + 1

s2 =
2v

u2 + v2 + 1

s3 =
u2 + v2 − 1
u2 + v2 + 1




(87)

With Poincaré we now assemble the complex variable

z = u+ iv =
s1 + is2
1 − s3

≡ z() (88)

in terms of which (87) can be written

s1 + is2 =
2z

z∗z + 1

s1 − is2 =
2z∗

z∗z + 1

s3 =
z∗z − 1
z∗z + 1




(89)

We notice it to be an implication of (89) that

s21 + s22 + s23 = (s1 + is2)(s1 − is2) + s23

=
4z∗z + (z∗z − 1)2

(z∗z + 1)2

= 1 automatically/inescapably (90)

And, since we have (s1 + is2)(s1 − is2) = (1 + s3)(1 − s3) by (90), it is an
implication of (88) that

z(−) = −s1 + is2
1 + s3

= − 1 − s3
(s1 + is2)(s1 − is2)

(s1 + is2)

= − 1 − s3
s1 − is2

= − 1
z∗()

(91)



Poincaré’s contribution 39

s

s

s

u

v

Figure 4: Stereographic projection of the Poincaré sphere onto the
equatorial plane gives (by similar triangle arguments)

1√
u2 + v2

=
s3√

u2 + v2 −
√
s21 + s22√

s21 + s22√
u2 + v2

=
s1
u

=
s2
v

from which follow (86).

So we have in

−→ − ⇐⇒ |E) −→ |E)⊥ ⇐⇒ z −→ −1/z∗

three distinct but equivalent characterizations of what it means to reverse (in
the sense “ make opposite”) the polarization of a beam; we have associated
beam polarizations with points on the z-plane, and have done so in such a way
that opposite polarizations are associated with points which are, in a sense
standard to geometry,25 “reciprocal.” Moreover, we have in (85) an invitation
to represent beam transformations old −→ new as automorphisms zold −→ znew

of the complex plane. Thus did Poincaré establish contact with a subject which

25 See Chapter 17, §3 in W. C. Graustein, Introduction to Higher Geometry
(). The point to notice is that z = reiϕ and 1

z∗ = 1
r e
iϕ lie on a line

containing the origin (while 1
z = 1

r e
−iϕ lies generally off that z-ray).
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was especially close to his heart, a subject concerning which he was, in his time,
a leading expert. Well known to him was the remarkable fact26 that

The most general analytic (or conformal) transformation
z −→ z′ = f(z) which maps the plane one-to-one into itself
is the “linear fractional transformation”27

z′ =
az + b

cz + d
(92)

With Poincaré we next step two introduce what in projective geometry
would be called “homogeneous coordinates:” complex numbers Z∗

1 and Z∗
2

whose ratio is z:
z =

kZ∗
1

kZ∗
2

: k arbitrary (93)

Remark: Were we, at this point, to exercise our option to
require

Z∗
1Z1 + Z∗

2Z2 ≡ X2
1 + Y 2

1 +X2
2 + Y 2

2 = 1

then we would, in effect, have achieved a mapping from the
unit sphere S3 in 4-space to the unit (Poincaré) sphere S2 in
3-space; we have encountered the historic first instance of a
Hopf mapping , which in the general case achieves

S2n−1 �→ Sn

and in  acquired fundamental importance in algebraic
topology.28

By slight rearrangement of (89) we have

s1 =
z∗ + z

z∗z + 1

s2 = i
z∗ − z

z∗z + 1

s3 =
z∗z − 1
z∗z + 1




(94)

which in the notation introduced at (96) becomes

s1 =
S1

S0
=

Z∗
1Z2 + Z∗

2Z1

Z∗
1Z1 + Z∗

2Z2

s2 =
S2

S0
= −i Z

∗
1Z2 − Z∗

2Z1

Z∗
1Z1 + Z∗

2Z2

s3 =
S3

S0
=

Z∗
1Z1 − Z∗

2Z2

Z∗
1Z1 + Z∗

2Z2




(95)

26 See, for example, L. R. Ford, Automorphic Functions (), p. 2.
27 Such transformations are sometimes said to be “bilinear,” and sometimes

called “Möbius transformations.”
28 For the simplest discussion I have been able to discover, see Chapter 12 of

C. T. C. Wall, A Geometric Introduction to Topology , ().
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Finally step three we introduce the complex 2 -vector

ZZZ ≡
(
Z1

Z2

)
(96)

and observe that (98) can be notated

s1 =
ZZZ
†
S2ZZZ

ZZZ
†
S0ZZZ

s2 =
ZZZ
†
S3ZZZ

ZZZ
†
S0ZZZ

s3 =
ZZZ
†
S1ZZZ

ZZZ
†
S0ZZZ




(97)

This is a pretty result,29 reminiscent of (53) except for the circumstance that the
Pauli matrices are now scrambled. They are, however, scambled in a familiar
way (see again (70.2)), and for an intelligible reason: At (53) we were working
in the ←→� basis (eigenbasis of S1), while Poincaré—when at step one he
projected from the north � pole—has tacitly elected to work in the � � basis
(eigenbasis of S3).

At (82) we obtained a representation-independent description of what
Jones has to say about the beam-modification properties of a linear device.
In the ←→� representation that equation assumes the form(

E1e
iδ1

E2e
iδ2

)
out

=
(
J11 J12

J21 J22

) (
E1e

iδ1

E2e
iδ2

)
in

(98)

Poincaré’s construction alerts us to the news that if we write this appropriately
unscrambled variant of (94)

s1 =
w∗w − 1
w∗w + 1

s2 =
w∗ + w

w∗w + 1

s3 = i
w∗ − w

w∗w + 1




(99)

and define

w ≡
[
E1e

iδ1

E2eiδ2

]∗
= E1

E2
eiδ

then we recover (20):

s1 =
E2

1 − E2
2

E2
1 + E2

2

s2 =
2E1E2 cos δ

E2
1 + E2

2

s3 =
2E1E2 sin δ

E2
1 + E2

2

29 It was to make it so that the unexpected ∗’s were introduced into (93).
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8. Optimal superposition of monochromatic beams: Pancharatnam’s theorem.
To develop the characteristics Sµ of the monochromatic beam A⊕B which
results from physical superposition of
• monochromatic beam A, with characteristics SAµ, and
• monochromatic beam B of the same color, with characteristics SBµ

one must take into account a physical circumstance concerning which the Stokes
parameters

{
SAµ, SBµ

}
convey no information: one must take into account the

relative phase of the constituent beams. How is this to be done?

To describe the composite beam we might write

|E) = |EA) + e−iφ|EB) (100)

Then

Sµ = (E|σµ|E) (101)
= SAµ + SBµ +

{
(EA|σµ|EB)e−iφ + complex conjugate

}
(EA|σµ|EB) ≡ Rµe

iθµ in polar representation
= SAµ + SBµ + 2Rµ cos(θµ − φ)

In particular,

intensity of composite beam ∼ S0 = SA0 + SB0 + 2R0 cos(θ0 − φ) (102)

will be maximal at φ = θ0. We will say that “the A-beam has been phase-tuned
to the B-beam” when the composite beam is brightest, which we have just seen
entails

tanφ = tan θ0

= i
(EB |EA) − (EA|EB)
(EB |EA) + (EA|EB)

(103)

To discover the more concrete meaning of this result, we retreat again to the
←→� representation, with respect to which

|EA) acquires coordinates
(
A1

A2e
iδA

)

|EB) acquires coordinates
(
B1

B2e
iδB

)

In this notation (103) becomes

tanφ =
A2B2 sin(δB − δA)

A1B1 +A2B2 cos(δB − δA)
(104)

which, we notice, remains unchanged if we make either beam brighter/dimmer:
evidently the value of φ depends only upon the relative figures of the two beams;
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i.e., upon their relative placement on the Poincaré sphere. In pursuit of this
observation, let

aaa ≡


 a1

a2

a3


 describe the Poincaré vector of the A-beam

bbb ≡


 b1
b2
b3


 describe the Poincaré vector of the B-beam

and notice that (104) can be written

tanφ =
4A1A2B1B2[sin δB cos δA−cos δB sin δA]

[(A2
1+A

2
2)+(A2

1−A2
2)][(B

2
1+B2

2)+(B2
1−B2

2)]+4A1A2B1B2[cos δB cos δA+sin δB sin δA]

=
a2b3 − a3b2

(1 + a1)(1 + b1) + a2b2 + a3b3
(105.1)

=
(aaa× bbb)1

1 + (aaa+ bbb)1 + aaa···bbb (105.2)

This result establishes that Poincaré data (normalized Stokes data), though
it contains no reference to temporal features of the underlying physical process,
does convey enough information to permit description of the phase-tuning angle.

It becomes useful at this point to adopt a sharpened notation: in place of
φ write φAB and interpret the subscript to refer to the process “tune B so as
to optimize (maximize the brightness of) A⊕B.” It is intuitively evident—and
follows from (105)—that φAB = −φBA, of which

φAB + φBA = 0

provides a more symmetric formulation. Which brings me to the point of these
remarks:

In  S. Pancharatnam, working at the Raman Research Institute in
Bangalore, was led from his experimental work to the theoretical observation30

tht beam-tuning is not a transitive procedure; if B is tuned to A, and C to B,
then it is generally not the case that C is tuned to A:

φABC ≡ φAB + φBC + φCA �= 0 (106)

A simple example serves to establish the point: take beams A, B and C whose
Poincaré vectors are

aaa =


 1

0
0


 , bbb =


 0

1
0


 and ccc =


 0

0
1




30 “Generalized theory of interference, and its applications,” Proceedings of
the Indian Academy of Sciences 44, 247 (1956).
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Working from (105) we then compute

tanφAB =
0

1 + 1 + 0
giving φAB = 0

tanφBC =
1

1 + 0 + 0
giving φBC = π

4

tanφCA =
0

1 + 1 + 0
giving φCA = 0

So we have
φABC = π

4 �= 0

which establishes Pancharatnam’s first point, and illustrates his second—deeper
and more beautiful—discovery: the vectors

{
aaa, bbb, ccc

}
mark a spherical triangle

on Poincaré’s unit sphere. That triangle is, in the present simple instance, a
spherical octant, and has area Ω = 1

84π = π
2 . Pancharatnam observed it to be

generally the case that

φABC = 1
2Ω(aaa, bbb, ccc) (107)
Ω(aaa, bbb, ccc) ≡ steradian area of the spherical triangle

Pancharatnam’s theorem (107) attracted little notice31 until after “Berry’s
phase” had entered the vocabulary of theoreticians,32 and the theorem had been
brought to the attention of Michael Berry by S. Ramaseshan & R. Nityananda.33

It was in response to that news than Berry wrote the paper34 which brought
Pancharatnam’s discovery to general attention, and made clear its relationship
to subsequent developments.35

31 Pancharatnam’s paper is cited three times in Born & Wolf’s Principles of
Optics (6th edition ), but only to provide general support of the claim that
the Stokes/Poincaré construction is sometimes useful; there is no evidence that
either author has actually read the paper, or appreciated its significance.

32 M. V. Berry, “Quantal phase factors accompanying adiabatic changes,”
Proc. Roy. Soc. (London) A392, 45 (1984). In “The quantum phase, five
years after”—a retrospective essay published (together with reprints of most
of the papers here cited) in A. Shapere & F. Wilczek, Geometric Phases in
Physics ()—Berry remarks that it was a post-seminar question by R. Fox
(Georgia Institute of Technology, spring ) which stimulated him to develop
the mature “theory of Berry phase.” Ronald Forrest Fox graduated in physics
from Reed College in , and was one of my own first students.

33 Current Science, India 55, 1225 (1986).
34 “The adiabatic phase and Pancharatnam’s phase for polarized light,”

J. Mod. Optics 34, 1401 (1987).
35 In the paper just cited, Berry argues that Pancharatnam’s optical phase

shift is “precisely analogous to the phase shift later predicted by Aharonov &
Bohm” (), and is to be distinguished from the phase shift which results
(R. Y. Chiao & Y. S. Wu, “Manifestations of Berry’s topological phase for the
photon,” Phys. Rev. Lett. 57, 933 (1986)) when the optical propagation vector
kkk is made to trace a closed loop on the kkk -sphere.
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Pancharatnam himself was led to (107) by an argument of almost magical
simplicity. He introduces a series of four elementary propositions relating in
very physical terms to the superposition/resolution of beams. It is from the
design of those propositions that he acquires his interest in triangles inscribed
upon the Poincaré sphere. He then reaches into an obscure corner of an antique
subject (spherical trigonometry)36 to proceed from a formula in hand to “the
following unexpected geometrical result.” C. Brosseau18 gives in his §3.2.4 an
outline of what he calls “an elegant derivation of Pancharatnam’s theorem due
to Aravind”37 which I have not seen, but which appears to be similarly rooted
in spherical trigonometry. It is because spherical triangles can have nothing
ultimately to do with the phenomenon in question that I prefer to proceed in
the language of differential geometry.38

Let C be a closed curve inscribed on the surface S2 of the unit 3-sphere, on
which we have installed spherical coordinates

{
ϕ, ϑ

}
in the usual way.39 The

area Ω of the region R bounded by C can—subject to a certain proviso (see
below)—be described

Ω(R) =
∮

C

1
2

(
ϕ cosϑ dϑ− sinϑ dϕ

)
(108)

This I assert on grounds that when C bounds the infinitesimal cell shown below

(ϕ, ϑ+ dϑ) •←−−−−−−−• (ϕ+ dϕ, ϑ+ dϑ)
| ↑
| |
| |
↓ |

(ϕ, ϑ) •−−−−−−−→• (ϕ+ dϕ, ϑ)

the proposed formula yields∮
C

1
2

(
etc.) = 1

2

{[
− sinϑ dϕ

]
+

[
(ϕ+ dϕ) cosϑ dϑ

]
+

[
− (sinϑ+ cosϑ dϑ)(−dϕ)

]
+

[
ϕ cosϑ(−dϑ)

]}
= cosϑ dϕdϑ
= differential area dΩ of the spherical patch

Notice, however, that if C is a circle of high latitude (i.e., if R caps the north
pole) then (108) gives

Ω(polar cap) = −π, even as cap radius ↓ 0

36 W. J. M’Clelland & T. Preston, A Treatise on Spherical Trigonometry
with Applications to Spherical Geometry (), Part II, Chapter 7, p. 50,
Exercise 1.

37 P. K. Aravind, Opt. Commun. 94, 1992 (1992).
38 As, according to Brosseau, was the preference also of E. De Vito &

A. Lavrero in another paper (J. Mod. Opt. 41, 233 (1994)) I have not seen.
39 Which is to say: x = cosϕ cosϑ, y = cosϕ sinϑ, z = sinϑ.
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Figure 5: Correct pole-avoidance procedure. The shaded region
R

{
0 � ϕ � ϕ̂ ; 0 � ϑ � ϑ̂ < π

2

}
has area

Ω = 1
2

{ ∫ ϕ̂

0

0 dϕ+
∫ ϑ̂

0

ϕ̂ cosϑ dϑ+
∫ 0

ϕ̂

(− sin ϑ̂) dϕ+
∫ 0

ϑ̂

0 dϑ
}

= ϕ̂ sin ϑ̂

Setting ϕ = 2π we therefore have

Ω(hemisphere) = lim
ϑ̂→π

2

2π sin ϑ̂ = 2π

Ω(equatorial belt) = 2π dϑ

Note particularly why it is—even in those extreme cases, and a
casual reading of the figure notwithstanding—that the second and
third integrals make identical contributions, and that the second and
fourth fail to cancel.

which is absurd. And that if we use (108) to compute the area of the principal
octant

{
0 � ϕ � π

2 ; 0 � ϑ � π
2

}
we are led to write

Ω(octant) = 1
2

{ ∫ π
2

0

0 dϕ+ π
2

∫ π
2

0

cosϑ dϑ+
∫ 0

π
2

0 dϑ
}

= π
4 , which is only half the correct value
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The moral is that (108) must be used subject to the proviso that C does not
envelop (first example) or pass through (second example) the polar singular
points of the

{
ϕ, ϑ

}
coordinate system. Correct procedures are illustrated in

Figure 5.

Equation (108) refers to the spherical instance of a circumstance which
is more familiar as encountered on the Euclidean plane: “Green’s theorem”40

reads ∫ ∫
R

(
Ay,x −Ax,y

)
dxdy =

∮
C

(
Ax dx+Ay dy

)
and in the special case Ax = − 1

2y, Ay = + 1
2x gives back

area of R = 1
2

∮
C

(
x dy − y dx

)
= 1

2

∮
C

∣∣∣∣∣∣
1 0 0
1 x y
1 x+ dx y + dy

∣∣∣∣∣∣
Note, however, that the expressions which appear on left and right in the
statement of Green’s theorem are, for superficially distinct reasons, invariant
with respect to gauge transformations

AAA −→ AAA′ = AAA+∇∇∇G : G(x, y) arbitrary

and that in

area of R = 1
2

∮
C

{(
− y + ∂

∂xG
)
dx+

(
x+ ∂

∂yG
)
dy

}
we have a multitude of seemingly distinct descriptions of plane area. Nor is this
development special to the Euclidean case; in place of (108) we have the more
general statement41

Ω(spherical R) =
∮

C

{(
A1(ϕ, ϑ) + ∂

∂ϕG
)
dϕ+

(
A2(ϕ, ϑ) + ∂

∂ϑG
)
dϑ

}
(109.1)

where
A1(ϕ, ϑ) ≡ − 1

2 sinϑ
A2(ϕ, ϑ) ≡ 1

2 ϕ cosϑ

}
(109.2)

and the gauge function G(ϕ, ϑ) is arbitrary.

Reverting now to (105), if

aaa =


 cosϑ cosϕ

cosϑ sinϕ
sinϑ




40 See classical electrodynamics (), p. 78.
41 One might expect to find such a result in R. Creighton Buck’s wonderful

Advanced Calculus (), though I have been unable to.
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and bbb lies close by

bbb = aaa+ δaaa with δaaa =


− sinϑ cosϕdϑ− cosϑ sinϕdϕ

− sinϑ sinϕdϑ+ cosϑ cosϕdϕ
cosϑ dϑ




then

dφ ≡ Pancharatnam’s phase differential

=
sinϕdϑ− sinϑ cosϑ cosϕdϕ

2(1 + cosϑ cosϕ)
≡ B1(ϕ, ϑ) dϕ+B2(ϕ, ϑ) dϑ (110)

What, from this point of view, Pancharatnam discovered (and direct calculation
readily confirms) is that

AAA =
(
A1

A2

)
and 2BBB = 2

(
B1

B2

)
are gauge-equivalent:

∂
∂ϑ

(
A1 − 2B1

)
− ∂
∂ϕ

(
A2 − 2B2

)
= 0 (111)

All the mensuration formulæ of spherical trigonometry are implicit in (110),
but the argument just concluded proceeds with out reference to such extraneous
details; as a generalization of (107) we have

φ(loop) =
∮

C
dφ = 1

2 (steradian loop area) (112)

We are in position now to appreciate Berry’s train of thought as developed
in “§3. Aharonov-Bohm effect on the Poincaré sphere” of a paper cited earlier.34

Let a monochromatic beam in the state described by the Poincaré vector aaa be
presented to a beam-splitter. One emergent beam proceeds unimpeded. The
other is tickled through a λ-parameterized sequence of states

aaa(λ) : aaa = aaa(0) � aaa(1) = aaa again

and then reunited with its companion beam. What Pancharatnam has in effect
demonstrated is that the reunited beams will be out of phase,42 and that

phase difference = 1
2

(
area of region patrolled by aaa(λ)

)
Berry draws attention to the elementary fact that if we deposit an “abstract
monopole of strength − 1

2 at the center of the Poincaré sphere” then area
becomes interpretable as flux, and we will have reproduced the essentials of
the Aharanov-Bohm effect.

42 From (100) and (112) we see more particularly that the adventuresome
beam will be relatively retarded/advanced according as the loop area is positive
� or negative �.
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9. Stokes’ parameters in statistical optics. We saw in §5 that physical features
characteristic of quasi-monochromatic beams lend a slow temporal wander to
Stokes’ parameters, and that the time-averaged parameters 〈Sµ〉 supply useful
information about the statistical properties of the beam; in particular, they
permit one to construct a theory of partial polarization. In the following
discussion we relax the quasi-monochromaticity assumption which gave rise to
“slow temporal wander” and find that Stokes parameters nevertheless emerge
as useful natural constructs, that “partial polarization” becomes linked to a
concept of “partial coherence.” The latter notion springs from the statistical
theory of “signals” (time series)—a sprawling Amazon of a subject which flows
through a jungle first explored by Norbert Wiener and cohorts in the ’s.
Even the tributary specific to optics (fed by laser technology and the practical
needs of optical and radio astronomers) is of awesome scale. I propose to “walk
on the rocks,” venturing just far enough from shore to acquire one specific result;
most details, essential qualifications and fine distinctions I must be content to
leave to the literature.43

Let f(t) be a real-valued signal. It is our cultivated instinct to write

f(t) = real part of φ(t) ≡ f(t) + ig(t) (113)

but before we can yield to such an impulse we must be in position to ascribe
meaning/value to the function g(t). One way to get into such a position is to
proceed as follows: write

f(t) = 1√
2π

∫ +∞

−∞
F (ω)e−iωt dω

The reality of f(t) implies F (−ω) = F ∗(ω), so negative frequency data is
redundant with positive requency data. We therefore expect the complex signal

φ(t) ≡ 2√
2π

∫ ∞

0

F (ω)e−iωt dω︸ ︷︷ ︸ (114)

|–defines the so-called “analytic signal”

to convey information identical to that written onto f(t). To do so is, in effect,
to write (113) with

g(t) = 1
πP

∫ +∞

−∞
1
s−tf(s) ds : “Hilbert transform” of f(t) (115)

43 Some of the missing detail, and essential references, can be found in optics
(), pp. 116–139.
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If, in particular,

f(t) = cosωt = + 1
2e

+iωt + 1
2e

−iωt

then φ(t) = e−iωt

and44 ig(t) = − 1
2e

+iωt + 1
2e

−iωt = −i sinωt

One can establish without much difficulty that

∫ +∞

−∞
f2(t) dt =

∫ +∞

−∞
g2(t) dt = 1

2

∫ +∞

−∞
|φ(t)|2 dt

and (with more difficulty) why it is that in typical applications
∫
f2 dt has

something to do with “intensity.” The moral is that importation of the “analytic
signal” purchases analytical advantages, but never leads one far astray from
the physics of the matter. Information concerning the coherence properties of
a signal is conveyed by expressions of the form∫

φ(t+ τ1) · · ·φ(t+ τµ)φ∗(t+ τµ+1) · · ·φ∗(t+ τµ+ν) dt

An optical beam can be construed to be a bundled pair of real signals E1(t)
and E2(t), representable as a bundled pair of analytic signals φ1(t) and φ2(t).
Interest in the dominant (leading order) coherence properties of such a beam
leads to study of expressions of the type

cmn(τ, t) ≡ lim
T→∞

1
T

∫ t

t−T
Em(t)En(t+ τ) dt

where the t -dependence drops away for the “steady” (or statistically stationary)
beams in which we will have special interest, leaving

cmn(τ) = 〈Em(t)En(t+ τ)〉

We are, in light of previous remarks, not surprised to discover that it proves
to be analytically more convenient (but ultimately equivalent) to examine the
elements

Γmn(τ) ≡ 〈φm(t)φ∗
n(t+ τ)〉 (116.1)

of the so-called correlation matrix

Γ (τ) =
(
Γ11(τ) Γ12(τ)
Γ21(τ) Γ22(τ)

)
(116.2)

which are susceptible to observation by a fairly cunningly designed array of

44 See 15.2.47 in A. Erdélyi et al , Tables of Integral Transforms ().
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interferometric and photometric techniques;45 the diagonal elements provide
leading measures of the degree to which the respective component beams are
“auto-correlated” (or temporally coherent), while the off-diagonal elements
quantify the “cross-correlation.” The correlation matrix evidently satisfies
the “cross-hermiticity condition” Γ †(τ) = Γ (−τ), but becomes hermitian in
the standard sense at τ = 0. Because to do so is to be led most directly to
my intended objective, I restrict my attention henceforth to that special case,
writing

Γ ≡
(
Γ11 Γ12

Γ21 Γ22

)
≡ Γ (0) (117)

The diagonal elements Γmm = 〈φm(t)φ∗
m(t)〉 are real, and refer to the

mean intensities Im of the component beams, while the off-diagonal elements
are complex conjugates of one another, and refer as before to inter-component
correlation. An informative benchmark is provided by the monochromatic signal
(2), in which case we have

Γ = 2
(

E1E1 E1E2e
−iδ

E2E1e
+iδ E2E2

)
(118)

From

〈(ξφ1 + φ2)(ξφ1 + φ2)∗〉 = ξ2Γ11 + ξ(Γ12 + Γ21) + Γ22 � 0 : all ξ

we have
(Γ12 + Γ21)2 � 4Γ11Γ22

which if we write Γ12 =
√
Γ11Γ22 γe

−iθ = (Γ21)∗ becomes

(γ cos θ)2 � 1 (119.1)

γ ≡
√
Γ12Γ21

Γ11Γ22
≡ dimensionless “degree of cross-correlation” (119.2)

In this notation

I = 〈(φ1 + φ2)(φ1 + φ2)∗〉 = Γ11 + Γ22 + Γ12 + Γ21

= I1 + I2 + 2
√
I1I2 · γ cos θ (120)

45 Note, however, that(
E1(t)

0

)
and

(
0

E2(t)

)
do not interfere!

To get anywhere interferometrically one must first of all contrive to achieve
(say) (

0
E2(t)

)
−→

(
E2(t)

0

)
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The parameter γ acquires its name from the observation that
• if γ = 0 then (typically of uncorrelated signals) intensities add (interference

effects are absent), while
• if γ = 1 then interference effects are fully developed.

From (120) it follows that

Imax = I1 + I2 + 2
√
I1I2 γ

Imin = I1 + I2 − 2
√
I1I2 γ

so in the language of observational interferometry we have

“visibility” ≡ Imax − Imin

Imax + Imin
=

√
I1I2

1
2 (I1 + I2)

γ

It is, however, a general proposition46 that the arithmetic mean dominates the
harmonic mean: if a and b are any positive numbers, then

√
ab

1
2 (a+ b)

� 1, with equality if and only if a = b

So we have

visibility � γ, with equality if and only if I1 = I2

which suggests a method for measuring the degree γ of cross-correlation present
in the beam. What about θ?

Because Γ is hermitian we can write Γ = 1
2

(
Γ0σ0 +Γ1σ1 +Γ2σ2 +Γ3σ3

)
,

which in Pauli’s representation becomes(
Γ11 Γ12

Γ21 Γ22

)
=

(
Γ0 + Γ1 Γ2 − iΓ3

Γ2 + iΓ3 Γ0 − Γ1

)
(121)

giving

Γ0 = 1
2

(
Γ11 + Γ22

)
Γ1 = 1

2

(
Γ11 − Γ22

)
Γ2 = 1

2

(
Γ21 + Γ12

)
=

√
Γ11Γ22 γ cos θ

iΓ3 = 1
2

(
Γ21 − Γ12

)
= i

√
Γ11Γ22 γ sin θ

−→ E2
1 + E2

2

−→ E2
1 − E2

2

−→ 2E1E2 cos δ
−→ i 2E1E2 sin δ




(122)

where I have used arrows −→ to indicate what happens when one looks in
particular to the monochromatic case (118). “What happens” is that one

46 See p. 362 in R. Courant & H. Robbins’ What is Mathematics? (),
where the point is phrased this way: the rectangle of given perimeter and
maximal area is square: ab �

[
1
2 (a+ b)

]2, with equality if and only if a = b.
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recovers the expressions which at (20) served to define the Stokes parameters
of a monochromatic beam! Evidently the “Pauli coordinates” of Γ serve in
effect to generalize those definitions. The relative phase parameter δ (which
itself presumes monochromaticity) has, at the same time, acquired a generalized
meaning θ, but a meaning which still admits of polarimetric quantification. We
are led by these remarks to make a notational adjustment Γµ �→ Sµ, and in
place of (121) to write(

Γ11 Γ12

Γ21 Γ22

)
=

(
S0 + S1 S2 − iS3

S2 + iS3 S0 − S1

)
(123)

From
detΓ = Γ11Γ22

{
1 − γ2

}
= S2

0 − S2
1 − S2

2 − S2
3

= S2
0

{
1 − P 2

}
=

[
1
2 (Γ11 + Γ22)

]2{1 − P 2
}

� Γ11Γ22

{
1 − P 2

}
� 0

we obtain 1 � 1 − γ2 � 1 − P 2 � 0 giving

0 � γ � P � 1 (124)

The central inequality asserts that the

degree of cross-correlation � degree of polarization

with equality if and only if Γ11 = Γ22, which at (122) was seen to entail S1 = 0.
For an uncorrelated beam γ = 0, which by (122) entails S2 = S3 = 0, while for
an unpolarized beam S1 = S2 = S3 = 0.

We are brought thus to the conclusion that

P 2 =
S2

1 + S2
2 + S2

3

S2
0

γ2 = 1 − S2
0

S2
0 − S2

1

(
1 − P 2

)
=

S2
2 + S2

3

S2
0 − S2

1

θ = arctan
S3

S2

refer in their separate ways to information borne by Stokes’ parameters Sµ, and
that the latter, in their most general guise, refer to leading-order auto/cross-
correlation properties of the 2-component beam.

Given an n-component signal we expect to be led by similar argument to
an expanded set of parameters{

S0, S1, . . . , Sn2−1

}
Remarks pertaining to the case n = 3 can be found in §3.1.6.7 and Appendix D
of Brosseau.18
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Beams with identical Stokes parameters (identical leading-order statistics)
can be expected generally to be distinct in higher order. Fourth-order statistics
bears directly upon some important physics (theory of intensity fluctuations,
speckle interferometry, the Brown-Twiss effect), but the mathematics becomes
rapidly more complicated as the statistical order ascends, partly because simple
matrix methods no longer suffice to bear the analytical burden.

I have indicated how the Mueller calculus (§4) and the Jones calculus (§6)
can be used
• to describe the state of a monochromatic beam
• to describe the action upon such a beam by a linear device

and have written “Jones =
√

Mueller” to suggest the relationship between those
calculi. We are in position now to speak more precisely about the features which
distinguish those formalisms:

The objects fundamental to the Mueller calculus are Stokes’ parameters,
which are quadratic in the fields and directly observable as intensities. Within
that formalism one writes

S superimposed beams
µ =

∑
S component beam
µ

but the presumption that “intensities add” was seen at (120) to entail a
presumption that the component beams are uncorrelated: γ = 0. The theory
initially presumed monochromaticity, but was found by introduction of “slow
temporal wander” to support a notion of partial polarization.

The objects fundamental to the Jones calculus, on the other hand, are
the fields themselves (amplitudes and relative phase, with a shared eiωt-factor
discarded), and to describe beam superposition one writes

|E) superimposed beams =
∑

|E) component beam

A monochromaticity assumption is central to the formalism, and since
• monochromaticity =⇒ perfect correlation: γ = 1
• γ = 1 =⇒ P = 1, by (124)

the Jones calculus is rendered inapplicable to partially polarized beams. But
the theory extracted from the correlation matrix Γ , written on complex 2-space
as it is, does possess a very Jonesesque coloration, and can be considered to
have remedied that defect.

10. Beam entropy. From the Γ = S0σ0 + S1σ1 + S2σ2 + S3σ3 characteristic of
some given beam, form the “density matrix”

ρ ≡ 1
2S0

Γ = 1
2

(
I + s1σ1 + s2σ2 + s3σ3

)
= 1

2

(
1 + s1 s2 − is3
s2 + is3 1 − s1

)
(125)

which, by contrivance, has unit trace. The associated beam has polarization

P =
√
s21 + s22 + s23 � 1 (126)
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and (to say the same thing another way) the 3-vector sss marks a point
• on the surface of the Poincaré sphere if P = 1 (perfect polarization)
• interior to the Poincaré sphere if P < 1 (partial polarization).

Quite generally

det(M − λI ) = λ2 − (tr M)λ+ det M if M is 2 × 2

so in the case at hand

det(ρ − λI ) = λ2 − λ+ 1
4 (1 − P 2) (127)

The eigenvalues of ρ are given therefore by

λ = 1
2 (1 ± P ) which




become
{

0, 1
}

in the case P = 1
become

{
1
2 ,

1
2

}
in the case P = 0

sum to unity in all cases
(128)

It follows from (127) by the Cayley-Hamilton theorem that

ρ2 = ρ − 1
4 (1 − P 2) I

according to which ρ becomes projective in the case P = 1. If P �= 0 we can in
contrary cases form

P ≡ 1
2

(
I + ŝ1σ1 + ŝ2σ2 + ŝ3σ3

)
: ŝss ≡ 1

P sss is a unit vector (129.1)

and observe that, for the reasons just described, P is projective. So also therefore
is

P⊥ ≡ I − P = 1
2

(
I − ŝ1σ1 − ŝ2σ2 − ŝ3σ3

)
(129.2)

which (trivially) is orthogonal to P: PP⊥ = O. We are in position now to notice
that

1
2 (1 + P ) P + 1

2 (1 − P ) P⊥

= 1
2

[
1
2 (1 + P ) + 1

2 (1 − P )
]
I + 1

2

[
1
2 (1 + P ) − 1

2 (1 − P )
]
ŝss···σ

= 1
2 I + 1

2P ŝss···σ
= 1

2

(
I + sss···σ

)
= ρ (130)

at which point we have accomplished the spectral resolution of ρ: we have
displayed the density matrix as a weighted sum47

ρ = p1P1 + p2P2 (131)

47 Here—the better to expose the simple point—I have adopted a simplified
notation intended to eliminate some distracting clutter.
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of orthogonal projection opertors, and the associated partially polarized beam
as an incoherent superposition of a pair of oppositely polarized beams.

It becomes at this point entirely natural to mimic the procedure by which
John von Neumann assigned an “entropy” to quantum mechanical mixed states;
i.e., to introduce a

“beam entropy” ≡ −p1 log p1 − p2 log p2 (132)
= − 1

2 (1 + P ) log
[
1
2 (1 + P )

]
− 1

2 (1 − P ) log
[
1
2 (1 − P )

]
= − log

{[
1
2 (1 + P )

] 1
2 (1+P )[ 1

2 (1 − P )
] 1

2 (1−P )
}

(133)

=
{

0 at P = 1: beam “maximally organized”
log 2 at P = 0: beam “minimally organized”

Evidently “degree of polarization” and “beam entropy” speak in distinct but
equivalent ways about the same thing. The right side of (133) is plotted in the
following figure.
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Figure 6: “Beam entropy” plotted vs.“degree of polarization.”

I describe now an alternative organization of the derivation of (132). We
take as our points of departure the observations that (132) can be written

“beam entropy” = −tr
{
ρ log ρ

}
(134)

and that (130) can be expressed48

ρ = P P + 1
2 (1 − P )(P + P⊥)

= 1
2 (1 − P ) I + P P (135)

= ρunpolarized + ρ100% polarized

48 See again the remark immediately subsequent to (51).
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How to describe log ρ? Notice that if P is projective then

eaI+bP = eaI · ebP = ea
{
I + (eb − 1)P

}
= α I + βP with α = ea, β = ea(eb − 1)

so
log(α I + βP) = (logα) · I + log(1 + β/α) · P (136)

From this general proposition it follows in particular49 that

log ρ =
(
log 1−P

2

)
· I +

(
log 1+P

1−P
)
· P

giving

ρ log ρ =
{(

1−P
2

)
· I +

(
P

)
· P

}{(
log 1−P

2

)
· I +

(
log 1+P

1−P
)
· P

}
=

(
1−P

2 log 1−P
2

)
· I +

{
1−P

2 log 1+P
1−P + P

[
log 1−P

2 + log 1+P
1−P

]}
· P

=
(

1−P
2 log 1−P

2

)
· I +

{
1+P

2 log 1+P
2 − 1−P

2 log 1−P
2

}
· P

But (because I is 2×2) tr I = 2 and (because P projects onto a ray) tr P = 1, so

−tr
{
ρ log ρ

}
= expression displayed at (133)

This computational strategy pertains also to (131) as it pertains, indeed, to any
representation of the design ρ =

∑
(commuting projectors).

When the possibility of defining a “beam entropy” first occurred to me I
naively thought the idea to be novel. I discover, however, that it is an idea with
a history, and that it is especially dear to Christian Brosseau, who made it the
subject of Chapter 3.4 in his recent monograph,18 and returns to the topic in
his §§4.1.1.9, 4.1.2.6 and Appendix H. Though Brosseau does make some use
of the idea in connection with his account of the theory of beam degradation
by multiple scattering, it is my impression that “beam entropy” remains at the
moment a pretty idea with nothing to do, waiting to be folded into some future
theory: it serves as a beam descriptor (equivalent to P ), but we are
• in possession of no statement of the form

beam entropy = log(number of equivalent states)

• in no position to speak of “entropy transport”
• in no position to write out the thermodynamics of thermalized beams.

49 Reading from (135) we set α = 1
2 (1 − P ) and β = P , which entail

1 + β/α =
1 + P

1 − P
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We recall that it was the thermodynamics of thermalized (blackbody) radiation
that gave the world quantum mechanics. But “blackbody beams” are maximally
featureless; they are, in particular, unpolarized, so the relationship (if any)
between Planck’s “modal entropy density” and “beam entropy” is necessarily
indirect.

Some algebraic aspects of the preceding discussion will have filled readers
with a sense of déjà vu. I discuss now why that is so. In my account (§6) of
the Jones calculus I had occasion to introduce (at (73)) what I idiosyncratically
called the “beam operator”

b ≡ 1
2

{
S0σ0 + S1σ1 + S2σ2 + S3σ3

}
Operative at the time was an explicit monochromaticity assumption (which
entailed 100% polarization, whence S2

0 − S2
1 − S2

2 − S2
3), but that assumption

can be dropped; one arrives then at a “beam discriptor” which is proportional
to the “density operator” ρ:

b = S0 · 1
2

{
I + s1σ1 + s2σ2 + s3σ3

}︸ ︷︷ ︸
ρ

The question arises: Why, in optical theory, does one need both b and ρ? The
density operator ρ is the “mathematically more natural” of the two (it has
unit trace, and becomes projective in the “pure case”), and it is the object
familiar from quantum theory. But in quantum theory the value of (ψ|ψ) is
universal, while in optics the value of (E|E) is variable. To distinguish bright
beams from dim beams of otherwise identical design one needs, in addition to
the information conveyed by ρ, the absolute intensity information conveyed by
S0, and b is simply the “name” of the duplex construct S0b.

Aspects of the preceding discussion—particularly the relation of (135) to
(131)—inspire the following mathematical digression:

11. Principle of optical equivalence, revisited. I begin with remarks bearing
upon my recent claim (end of §9) that “the Jones calculus is. . . inapplicable to
partially polarized beams.” Relative to the

{
←→�

}
-basis the Jones vector |E)

representative of a monochromatic (!) beam acquires the coordinates(
E1

E2e
iδ

)

Multiplication by E1 and appeal the the equations (20) which served initially
to introduce Stokes’ parameters gives

E1

(
E1

E2e
iδ

)
= 1

2

(
S0 + S1

S2 + iS3

)
with S2

0 = S2
1 + S2

2 + S2
3

= 1
2S0

(
1 + ŝ1
ŝ2 + iŝ3

)
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We have, therefore, a nest of associations

monochromatic beam
↓

point ŝss on surface of the Poincaré sphere↓ ↓

P = 1
2

(
1 + ŝ1 ŝ2 − iŝ3
ŝ2 + iŝ3 1 − ŝ1

)
ξ =

(
1 + ŝ1
ŝ2 + iŝ3

)
which is brought to closure by the not-very-surprising observation that

Pξ = ξ : P projects onto the ξ-ray

The transformation ŝss → −ŝss (which sends a point on the Poincaré sphere to its
diametric opposite, and which at (129) was seen to send P → P⊥) sends

ξ → ξ⊥ : Pξ⊥ = 0 and ξ∗⊥ξ = 0

All of which—physics and formalism—lives on the 100% polarized surface
of the Poincaré sphere, and in connection with which we observe that while

monochromaticity ⇒ perfect polarization (P = 1)

the converse is not true; examples of the type

E(t) =
(

E1

E2e
iδ

)
f(t) : perfectly correlated but non-monochromatic

serve to establish that important point.

It is by incoherently weighted superposition—formally: by formation of the
density matrix—that one gains access to the interior of the Poincaré sphere,
where the arguments of §5 and the more general arguments of §9 tell us we in
the general case want to be. Let{

ŝss1, ŝss2, . . . , ŝssn
}

describe points sprinked on the Poincaré sphere{
p1, p2, . . . , pn

}
describe their respective weights ( pi � 0,

∑
pi = 1)

and observe that
sssmean ≡

∑
pi ŝssi (137)

serves except in trivial cases (which is to say: except when all but one of the
pi vanish, which entails

∑
p2
i = 1) to describe an interior point of the Poincaré

sphere. Observe also that each interior point sssmean can be associated with
infinitely many distinct “weighted sprinkles”

∑
pi ŝssi. Finally, form the density

matrix

ρ ≡
∑

piPi = 1
2

(
1 + s1 s2 − is3
s2 + is3 1 − s1

)
mean

(138)

and observe once again that
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• trρ2 � 1 according as sssmean lies interior to or on the surface of the Poincaré
sphere;

• ρ is hermitian in all cases, but projective (ρ2 = ρ) if and only if trρ2 = 1.
The condition

trρ2 � 1 distinguishes




statistical “mixtures” of states
from “pure states” in quantum mechanics

“partially polarized” optical beams (0 � P < 1)
from “100% polarized” beams (P = 1)

but the confluence of formalism makes it all the more important to recognize
some interpretive distinctions:
• In quantum mechanics pi refers to the statistical weight with which a state
|i) has been admixed into an ensemble of distinct quantum systems; within
each such system one speaks of the superposition of states, but within the
ensemble one speaks of admixture;

• In the optical theory of beams pi refers to the relative intensity

pi =
intensity of ith component

total intensity
=

S0i

S01 + S02 + · · · + S03

of one component in a beam population which has been incoherently but
physically superimposed . In optical theory the “ensemble” is absent, while
in quantum theory the notion of “incoherent superposition” is absent. . . for
the reason that the ψ(x, t) supplied by quantum theory is not interpretable
as a “signal;” one cannot “sit at x and monitor the changing value of ψ.”

Stokes’ “Principle of Optical Equivalence”—according to which50

(alternatively assembled) optical beams which share identical
Stokes’ parameters cannot be distinguished by devices which
look only to Stoke’s parameters (and not to higher-order
correlational moments)

—is seen now to be not quite so circular as it might at first sight appear; it
asserts that (higher-order subtleties aside)

distinct beam mixtures (incoherent superpositions) are, if
described by identical density matrices ρ, indistinguisable

which is surprising and useful information not only from an observational point
of view, but also mathematically. The mechanism by which Stokes’ principle
comes to lie at the base of the (131) and (135)—two alternative “canonical
representations” of ρ —is developed in the caption to the following figure.51

50 See again p. 26.
51 I am indebted to Thomas Wieting for my first exposure to this pretty fusion

of geometry and alegebra.
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Figure 7: Four different beam mixtures which yield the same sssmean

(which yield, that is to say, the same density matrix ρ) and therefore
are, by the Principle of Optical Equivalence, indistinguishable. The
circles are cross sections of the Poincaré sphere, and sssmean has
been represented by an arrow. The figure at upper left illustrates
how “Caulder’s construction” can be used to locate sssmean for a
3-state mixture. The figure at upper right shows several equivalent
2-state mixtures. Elements of the 2-state mixture shown at lower left
are diametric, therefore orthogonal; the figure illustrates the special
nature of the “spectral representation” (131) of ρ; taking sssmean to
have length P , it becomes clear by the “teeter-totter principle” that
the arrow points toward a state with weight 1

2 (1 + P ), and from a
state with weight 1

2 (1− P ). The distinguishing feature of the figure
at lower right—designed to illustrate the mechanism responsible for
(135)—is that one of the beams lies at the (unpolarized) origin; by
the teeter-totter principle it has weight 1 − P .
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PART II: APPLICATIONS TO CLASSICAL MECHANICS

12. Isotropic oscillator: fundamentals. Look, by way of preparation, to the
1-dimensional case: To announce our interest in the classical physics of a
harmonic oscillator we might write

H(x, p) = 1
2m

{
p2 + (mωx)2

}
(139)

giving
ẋ = −[H,x] = +p/m

ṗ = −[H, p ] = −mω2x

}
(140)

whence
ẍ+ ω2x = 0 (141)

where the Poisson bracket has been defined in the usual way:

[A,B] ≡ ∂A
∂x

∂B
∂p − ∂B

∂x
∂A
∂p (142)

To emphasize the quadratic structure of the Hamiltonian it becomes natural to
write

H = 1
2λ

{
q2 + y2

}
with


 y ≡

√
mω2

λ x

q ≡
√

1
mλ p

(143)

where, it should be noticed, y and q are now co-dimensional . In this notation
the canonical equations of motion (140) are found to read

ẏ = +ωq = −ω
λ [H, y ]

q̇ = −ωy = −ω
λ [H, q ]

}
(144)

where the brackets on the right have adquired now an unanticipated factor
because the transformation

{
x, p

}
→

{
y, q

}
is not canonical :52

[y, q] = ω
λ [x, p]

The striking structure of the transformed Hamiltonian (143) makes it difficult
to resist writing

H = λu∗u with
{
u ≡ 1√

2
(y + iq)

u∗ ≡ complex conjugate

52 The transformation is, more precisely, not symplectic, but “canonical with a
non-unit multiplier.” The “multiplier” concept is absent from most elementary
accounts of the theory of canonical transformations, but see A. Wintner,
Analytical Foundations of Celestial Mechanics (), pp. 22–28. I introduce
the notion at p. 7 in Chapter 7 of classical dynamics (), and treat the
transformation properties of the Poisson bracket at p. 20.
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In this notation the coupled equations of motion (143) decouple, becoming

u̇ = −iωu = iωλ
{
∂H
∂u

∂u
∂u∗ − ∂u

∂u
∂H
∂u∗

}
= − ω

iλ [H,u ]

u̇∗ = +iωu∗ = iωλ
{
∂H
∂u

∂u∗

∂u∗ − ∂u∗

∂u
∂H
∂u∗

}
= − ω

iλ [H,u∗]

where the prefactor on the right arises (as before) from the circumstance that
the transformation

{
x, y

}
→

{
u, u∗

}
is canonical with a non-unit multiplier,

though the multiplier has become now imaginary :

[u, u∗] = ω
iλ [x, p]

If λ is dimensionally an energy then u and u∗ are dimensionless, but the classical
theory supplies no “natural energy.” If, however, (anticipating a practice
standard to the quantum theory of oscillators) we allow ourselves to write

λ = 	ω, where 	 has arbitrary value but dimensionality of “action”

and make the notational adjustment u �→ a to emphasize that we have done so,
then we have these summary formulæ

H = 	ωa∗a with
{
a = 1√

2

{√
mω/	 · x+ i

√
1/mω	 · p

}
a∗ = complex conjugate

(145)

[a, a∗] = 1
i� (146)

ȧ = −[H, a ] = −	ω[a∗a, a ] = −iωa
ȧ∗ = −[H, a∗] = −	ω[a∗a, a∗] = +iωa∗

}
(147)

where all brackets are understood to be [•, •]xp brackets, as described at (142).
The solution of (147)

a(t) = Ae−i(ωt−α) (148)

serve in effect to install a “clock” at the origin of the complex a-plane, and to
inscribe an ellipse on the physical phase plane:

x(t) = +X cos(ωt− α) with X ≡ A
√

2	/mω

p(t) = −P sin(ωt− α) with P ≡ A
√

2	mω

}
(149)

Turning now to the isotropic 2-dimensional system

H(x, p) = 1
2m

{
(p2

1 + p2
2) +m2ω2(x2

1 + x2
2)

}
(150.1)

in which we are at present primarily interested, we are led similarly to write

H = 1
2	ω

{
q21 + q22 + y2

1 + y2
2

}
(150.2)

= 	ω
{
a∗1a1 + a∗2a2

}
(150.3)
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with a1 and a2 defined in direct imitation of (145):

a1 ≡ 1√
2

{√
mω/	 · x1 + i

√
1/mω	 · p1

}
≡ 1√

2

{
y1 + iq1

}
a2 ≡ 1√

2

{√
mω/	 · x2 + i

√
1/mω	 · p2

}
≡ 1√

2

{
y2 + iq2

}

 (151)

Then
[a1, a

∗
1] = [a2, a

∗
2] = 1

i� (152)

while [a1 or a∗1, a2 or a∗2] = 0. From the equations of motion

ȧ1 = −[H, a1] = −iωa1

ȧ2 = −[H, a2] = −iωa2

}
(153)

and their conjugates53 one obtains

a1(t) = A1e
−i ωt

a2(t) = A2e
−i(ωt+δ)

}
(154)

which in (rescaled) physical variables read

y1(t) = +
√

2A1 cos(ωt)

q1(t) = −
√

2A1 sin(ωt)

y2(t) = +
√

2A2 cos(ωt+ δ)

q2(t) = −
√

2A2 sin(ωt+ δ)




(155)

The equation
H(x1, x2, p1, p2) = E (156)

serves to identify an E -parameterized family of nested surfaces of constant
energy in 4-dimensional phase space. From (150) we see that those surfaces
are
• hyperellipsoidal in the physical variables

{
x1, p1, x2, p2

}
, but become

• hyperspherical in the rescaled variables
{
y1, q1, y2, q2

}
, and

and are (in a manner of speaking) circular in 2-dimensional “complex phase
space.” The equations (155) trace and periodically retrace a t -parameterized
curve on the hypersphere of squared radius 2(A2

1+A2
2), with which we associate

the energy
E = 	ω(A2

1 + A2
2) (157)

Several typical projections of that curve are shown in Figure 8. Superposition of
the projections onto the

{
y1, q1

}
and

{
y2, q2

}
planes yields a pair of concentric

circles with � chirality; reinstallation of physical coordinates
{
x1, p1

}
and{

x2, p2

}
converts those into a concentric pair of identically figured ellipses in

standard position (principal axes coincident with the coordinate axes). On
the other hand, superposition of the projections onto the

{
y1, y2

}
and

{
q1, q2

}
planes yields duplicate copies of an ellipse the size/orientation/figure/chirality
of which is case-dependent; reinstallation of physical coordinates yields a pair
of concentric ellipses which differ only with respect to size.

53 This little phrase will henceforth be taken for granted.
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Figure 8: Four projections of a curve that lives in 4-dimensional
phase space. Shown above are superimposed plots of the curves{
x1(t), p1(t)

}
and

{
x2(t), p2(t)

}
; both ellipses have � chirality, and

in all cases their coincident principal axes are aligned with the
coordinate axes. Shown below are superimposed plots of the curves{
x1(t), x2(t)

}
and

{
p1(t), p2(t)

}
; chirality and other characteristics

of those concentric ellipses are case-dependent.

In particular, we have

xxx(t) =
(
x1(t)
x2(t)

)
(158)

x1(t) = X1 cos(ωt) with X1 =
√

2	/mωA1

x2(t) = X2 cos(ωt+ δ) with X2 =
√

2	/mωA2

which serve to describe the literal motion of the bob within its 2-dimensional
configuration space. Since (158) is structurally identical to (2) we can, by direct
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appropriation of (20), introduce “mechanical Stokes parameters”

S0 = X2
1 + X2

2

S1 = X2
1 − X2

2 = S0 cos 2χ cos 2ψ
S2 = 2X1X2 cos δ = S0 cos 2χ sin 2ψ
S3 = 2X1X2 sin δ = S0 sin 2χ




(159)

to describe the figure and chiral sense of the orbit.

But xxx(t) moves subject to principles of mechanics in a sense much more
immediate than can be said of the electrical field vector E(t). The details of
the mathematical mechanism by which H(xxx(t), ppp(t)) becomes t -independent are
typically quite intricate, but for the isotropic oscillator are uniquely transparent;
we (by (150.3)) have

H = 	ω aaa†aaa with aaa ≡
(
a1

a2

)
(160)

and when we introduce (154)—notated

aaa(t) = AAAe−iωt (161)

—we find that the exponentials cancel, leaving behind an expression which is
trivially/manifestly t -independent. The argument serves, in fact, to establish
the t -independence of every expression of the form54

Q = aaa†Qaaa

where reality entails the hermiticity of Q. We find it natural, therefore, to
introduce (compare (53))

Q0 = aaa† S0 aaa with (as before) S0 ≡
(

1 0
0 1

)

Q1 = aaa† S1 aaa with S1 ≡
(

1 0
0 −1

)

Q2 = aaa† S2 aaa with S2 ≡
(

0 1
1 0

)

Q3 = aaa† S3 aaa with S3 ≡
(

0 −i
i 0

)




(162)

54 Here I find it natural to preserve quadraticity, but that is inessential; one
has automatic t -independence for every expression of the form

Q = (arbitrary function of a1 and a2)(its conjugate)



Isotropic oscillator: fundamentals 67

We have here a quartet of manifestly conserved observables, of which (drawing
upon (151))

	ωQ0 = H1 +H2 (163.0)
	ωQ1 = H1 −H2 (163.1)

H1 ≡ 	ωa∗1a1 = 1
2	ω(q21 + y2

1) = 1
2m (p2

1 +m2ω2x2
1)

H2 ≡ 	ωa∗2a2 = etc.
	ωQ2 = 	ω(a∗1a2 + a∗2a1)

= 	ω(y1y2 + q1q2)
= 1

m (p1p2 +m2ω2x1x2) (163.2)
	ωQ3 = i	ω(a∗2a1 − a∗1a2)

= 	ω(y1q2 − y2q1)
= ω(x1p2 − x2p1) (163.3)

provide descriptions in terms of (rescaled) physical variables. The observables
H1 and H2 are, in an obvious sense, “partial Hamiltonians” of the system.
Evidently

	ωQ0 = Hamiltonian
	ωQ1 = “Hamiltonian difference”
	ωQ2 = ?
	ωQ3 = ω · (angular momentum)

To establish that—as we anticipate—
{
Q1, Q2, Q3

}
comprise more of a “natural

package” than might, on this evidence, appear, we observe that in easy
consequence of the Poisson bracket relations

[ar, a
∗
s] = 1

i�δrs

we have

[aaa†Qaaa, aaa†Raaa ] = 1
i�aaa

†[Q,R ]aaa : any 2 × 2 matrices Q and R (164)

From the familiar commutation properties (55) of the Pauli matrices it follows
therefore that

[Q1, Q2] = 2
�
Q3

[Q2, Q3] = 2
�
Q1

[Q3, Q1] = 2
�
Q2

The observables

L1 ≡ 1
2	Q1 = 1

4mω (p2
1 +m2ω2x2

1) − 1
4mω (p2

2 +m2ω2x2
2)

L2 ≡ 1
2	Q2 = 1

2mω (p1p2 +m2ω2x1x2)
L3 ≡ 1

2	Q3 = 1
2 (x1p2 − x2p1)


 (165)
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therefore satisfy Poisson bracket relations

[L1, L2] = L3

[L2, L3] = L1

[L3, L1] = L2


 (166)

familiar from the classical theory of angular momentum—relations well known
to be characteristic of the generators of the 3-dimensional rotation group O(3).

To remark that the infinitesimial unitary transformation

aaa −→ aaa+ idθ
(
λ1 S1 + λ2 S2 + λ3 S3

)
aaa (167.1)

induces an infinitesimal rotation amongst the Q’s
Q1

Q2

Q3


 =


aaa† S1 aaa
aaa† S2 aaa
aaa† S2 aaa




↓
Q1 + dQ1

Q2 + dQ2

Q3 + dQ3


 =


Q1

Q2

Q3


 + idθ aaa†


λ1[S1, S1] + λ2[S1, S2] + λ3[S1, S3]
λ1[S2, S1] + λ2[S2, S2] + λ3[S2, S3]
λ1[S3, S1] + λ2[S3, S2] + λ3[S3, S3]


aaa

=


Q1

Q2

Q3


 − 2idθ


 0 λ2 −λ3

−λ2 0 λ1

λ1 −λ1 0





Q1

Q2

Q3


 (167.2)

is to remark simply that oscillator physics has led us back again to a familiar
mathematical intersection. . .but this time with a twist: the transformations
(167) are canonical in 4-dimensional phase space, Lie-generated by

G = 	(λ1Q1 + λ2Q2 + λ3Q3) (168)

The argument hinges on the observation55 that

[aaa†Qaaa, aaa ] = i
�
Qaaa (169)

from which (164) can be recovered as a corollary, and which entails

[G,aaa ] = i
(
λ1 S1 + λ2 S2 + λ3 S3

)
aaa (170)

The reconstruction of (167.2) is now so straightforward (but fun!) that I omit
the details. While mechanics supplies variables ppp conjugate to the variables xxx ,

55 Write

[aaa†Qaaa, ar] =
∑ ∑

Qpq[a
∗
paq, ar] = −

∑ ∑
Qpq

1
i�δpraq = i

�

∑
Qrsas
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and posits the dynamical problem in phase space (where the theory of canonical
transformations resides), electrodynamics supplies no variables conjugate to
E, no “phase space,” no “canonical transformations;” it is in that sense that
oscillator mechanics has added a new dimension—a “novel twist”—to the nest
of ideas introduced into optics by Stokes/Poincaré/Jones.

I would emphasize the the Q’s are by nature observables—functions, to be
distinguished from their valuations just as, and for the same reason that, we
are careful to distinguish the Hamiltonian H(xxx, ppp) from its valuation E. From

[H,Qr] = 	ω · [Q0, Qr] = 	ω · 1
i�aaa

†[So, Sr]aaa = 0 (171)

we learn that the Q’s are conserved observables (constants of the dynmical
motion), while from

Q2
0 −Q2

1 −Q2
2 −Q2

3 = (a∗1a1 + a∗2a2)
2 − (a∗1a1 − a∗2a2)

2

− (a∗1a2 + a∗2a1)
2

+ (a∗1a2 − a∗2a2)
2

= 0 (172)

we learn that that Q’s are not independent, but subject to a familiar constraint.

The “mechanical Stokes parameters” introduced at (159) are dimensionally
“squared lengths,” and arise when one looks to the conserved value of the
(dimensionless) observables Q:

Sµ = (2	/mω) · (numerical value of Qµ)

13. The driven/damped isotropic oscillator. The isotropic oscillator has been
seen to present us with a theory which is formally homologous to the theory of
monochromatic optical beams, and which reveals an especially close relationship
to the Jones formalism. The Mueller/Jones calculi are, however, concerned
more with “beam manipulation” than with “beam description;” they can, I
suppose, be adapted to the theory of oscillators, but the theory of “kicked
oscillators”—analogs of beams intercepted by devices—makes no strong claim
to our attention. The orbital precession which results from the presence of
anharmonicity is (more interestingly) directly analogous to “optical activity,”
but that also is optico-mechanics which I must on this occasion be content to
pass by. Such formal analogies are interesting, but their practical utility tends to
be diminished by this physical circumstance: at optical frequencies one cannot
“watch” the motion of E(t), but one can quite feasibly watch the motion of
xxx(t). The optician and the mechanic find themselves in fundamentally different
situations, and in some respects it becomes artificial for one to borrow the tools
of the other. On such grounds one expects the optico-mechanical analogy to
acquire deepened interest when looks to the quantum theory of the isotropic
oscillator. Of the several things that optics has to say to classical mechanics, I
am motivated to look here only to one.
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To describe a driven isotropic oscillator we write

ẍ1 = −ω2x1 + f1(t)

ẍ2 = −ω2x2 + f2(t)

}
(173)

Which is to say: we write (compare(150.1))

H(x, p) = 1
2m

{
(p2

1 + p2
2) +m2ω2(x2

1 + x2
2)

}
−m

{
x1f1(t) + x2f2(t)

}
(174)

giving
ẋ1 = 1

mp1

ṗ1 = −mω2x1 +mf1(t)
ẋ2 = 1

mp2

ṗ2 = −mω2x2 +mf2(t)

from which (173) can be recovered. In the notation introduced at (145) we
therefore have

ȧaa = −iωaaa+ iggg(t) (175)

with ggg ≡
√
m/2	ωfff . If AAA ≡ aaa(0) is prescribed, then the solution of (175) can

be described

aaa(t) = e−iωt
{
AAA+ i

∫ t

0

eiωsggg(s) ds
}

(176)

To accommodate damping—mechanical analog of beam progress through
an absorbtive medium—we might proceed phenomenologically, writing

(173) −→
{
ẍ1 = −2γẋ1 − ω2x1 + f1(t)

ẍ2 = −2γẋ2 − ω2x2 + f2(t)

or perhaps (and even though such equations clearly fail the canonicity test

∂ẋi/∂xj = ∂2H/∂pi∂xj = −∂ṗj/∂pi

and therefore cannot be obtained from a Hamiltonian)

ẋxx = 1
mppp

ṗpp = −2γppp−mω2xxx+mfff

}
(177)

which can also be expressed

ȧaa = −(γ + iω)aaa + γaaa∗ + iggg

ȧaa∗ = −(γ − iω)aaa∗ + γaaa − iggg

}
(178)
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with ggg(t) ≡
√
m/2	ωfff(t). From the coupled system (178) it follows that (in

the absence of forcing: ggg = 000) energy dies exponentially, but with a gurgle56

Ė = −2γE+ γ	ω(aaa∗···aaa∗ + aaa···aaa)︸ ︷︷ ︸
“gurgle”

A cleaner theory results if in place of (178) we write the uncoupled system

ȧaa = −(γ + iω)aaa + iggg

ȧaa∗ = −(γ − iω)aaa∗ − iggg

}
(179)

—which step we might attempt to justify on the grounds that
• the uncoupled system is easier to solve (one has only to adjust (176));
• energy dies more comfortably (no gurgle: Ė = −2γE);
• the theory is only intended to be “phenomenological” anyway.

The point is that—whether one works from (176) or from some more
elaborate variant—the installation of driving forces and/or damping induces

aaa(t) = e−iωtAAA −→ aaa(t) = e−iωtAAA(t)

and lends t -dependence to the associated “mechanical Stokes parameters”

Sµ −→ Sµ(t)

We are in position, therefore, to bring optical language and methods (partial
polarization, coherence/correlation) to the description of “tickled isotropic
oscillators” (oscillators in weak magnetic fields, oscillators subject to stochastic
perturbation, etc.). And to bring notions borrowed from oscillator theory
(resonance) to the description of optical phenomena (laser beam production
by stimulated emission). I shall, on this occasion, venture down none of those
side trails, though they appear to be fairly easy hikes.

14. Fundamentals of the 2-dimensional Kepler problem. Bertrand’s theorem57

asserts that precisely two central potentials
• the isotropic oscillator potential U(r) = 1

2kr
2, and

• the Coulomb potential U(r) = −k/r (k > 0)
have the property that all bound orbits close upon themselves. As it happens,

56 See analytical methods of physics (), p. 170.
57 Joseph Bertrand (). See §3-6 and the detailed discussion which appears

as Appendix A in H. Goldstein’s Classical Mechanics (2nd edition ).
Goldstein cites as his source H. C. Plummer, An Introductory Treatise on
Dynamical Astronomy (, reprinted in ). For a useful sketch see §2.3.3
in J. V. José & E. J. Saletan, Classical Dynamics (), and for a much
deeper and more modern account of what the author calls the “Bertrand-Königs
theorem” see §§4.4 & 4.5 in J. L. McCauley, Classical Mechanics ().
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the bound orbits are in both cases elliptical, though with this difference:
• the force center marks the center of the orbital ellipse in the former case;
• the force center marks one focus of the orbital ellipse in the letter case.

And it is from the former case to the latter that we now turn.

Central force motion lies necessarily in a plane, and classically we lose
nothing (but gain in the elimination of some extraneous clutter) if we restrict
our attention to the physics written onto the orbital plane.58 We look, therefore,
to the “2-dimensional Kepler problem”

H = 1
2m (p2

1 + p2
2) − k(x2

1 + x2
2)

− 1
2 (180)

Recently I have had occasion59 to explore ramifications of a fact which came
accidentally to my attention in quite another connection;60 namely, that the
problem thus posed is “separable in the sense of Liouville” in infinitely many
distinct coordinate systems—the elliptic (or “confocal conic”) coordinate
systems which have
• one focus coincident with the force center
• the other (empty) focus positioned arbitrarily

and from which the more familiar polar and confocal parabolic coordinates can
be recovered as limiting cases. Liouville’s argument yields a separation constant
which, when described in terms of phase coordinates

{
xxx, ppp

}
, acquires the status

of a conserved observable

[H,G ] = 0 with G = ma2H +maaa···KKK + 1
2L

2 (181)

where a2 ≡ aaa···aaa, aaa locates the “center” of the elliptic coordinate system (bisector
of the line linking the occupied focus (origin) to the empty focus) and

L ≡ x1p2 − x2p1 (182.1)

K1 ≡ + 1
mp2L− kx1

1√
x2
1+x

2
2

K2 ≡ − 1
mp1L− kx2

1√
x2
1+x

2
2


 (182.2)

Since aaa is arbitrary, we are, in effect, supplied at (181) with a population of
three conserved observables:

[H,L ] = [H,K1 ] = [H,K2 ] = 0 (183)

58 In “Classical/quantum theory of 2-dimensional hydrogen” (Reed College
Physics Seminar Notes ) I draw attention to the fact that such simplification
is not permitted quantum mechanically; most conspicuous among its several
defects is the fact that it leads to the wrong energy spectrum.

59 “Reduced Kepler Problem in elliptic coordinates” ().
60 “Kepler Problem by descent from the Euler Problem” (Physics Seminar

Notes ).
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The argument is pretty, but for the purposes immediately at hand superfluous; it
is sufficient to remark that the constructions (182) and Keplerean conservation
laws (183) are “well-known,” as indeed they are: L is just the angular
momentum (component normal to the orbital plane), and its conservation a
reflection of the rotational symmetry of the system, while KKK is the celebrated
“Runge-Lenz vector”61 (component lying in the orbital plane), called into
being as a conserved object by the fact of orbital closure. Equations (183) are
susceptible to direct computational verification, so stand on their own legs,
independently of the support of any elaborate theory, however “illuminating”
such support may be. Direct computation reveals, moreover, that

[L,K1] = K2

[K2, L] = K1

[K1,K2] = − 2
mH · L

which expresses “algebraic closure” in the Poisson bracket sense. If, motivated
by this result, we define

J1 ≡ K1

/√
− 2
mH

J2 ≡ K2

/√
− 2
mH

J3 ≡ L


 (184)

then we achieve
[J3, J1] = J2

[J2, J3] = J1

[J1, J2] = J3


 (185)

The observables
{
J1, J2, J3

}
are co-dimensional (each has the dimension of

action), and within the bound sector of phase space each is real.

Each solution
{
xxx(t), ppp(t)

}
draws a closed curve C in 4-dimensional phase

space. Each such C is inscribed simultaneously on
• a 3-dimensional surface ΣH of constant H;
• a 3-dimensional surface ΣJ1 of constant J1;
• a 3-dimensional surface ΣJ2 of constant J2;
• a 3-dimensional surface ΣJ3 of constant J3.

But ΣH ∩ ΣJ1 ∩ ΣJ2 ∩ ΣJ3 is a point (not a curve) unless the observables in

61 For a good account of the basic theory see §3-9 in Goldstein’s 2nd edition.
In “Prehistory of the ‘Runge-Lenz’ vector” (AJP 43, 737 (1975)) Goldstein
traces the history of what he calls the “Laplace-Runge-Lenz vector” back to
Laplace (). Reader response to that paper premitted him in a subsequent
paper (“More on the prehistory of the Laplace-Runge-Lenz vector,” AJP 44,
1123 (1976)) to trace the idea back even further, to the work of one Jakob
Hermann () and its elaboration by Johann Bernoulli (). Goldstein’s
revised suggestion that KKK be called the “Hermann-Bernoulli -Laplace vector”
seems unlikely to catch on, historical justice notwithstanding.
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question are subject to a constraint (functionally interdependent). . . and indeed:
computation (executed on a hunch, and made feasible only with the assistance
of Mathematica) gives

K2
1 +K2

2 − 2
mH ·L2 = k2 (186.1)

of which
H · (J2

1 + J2
2 + J2

3 ) = − 1
2mk2 (186.2)

and

J2
0 − J2

1 − J2
2 − J2

3 = 0 (186.3)
J2

0 ≡ − 1
2mk2/H

provide alternative formulations. The quantum analog of pretty result was
noted (no small accomplishment!) and used to critical effect by Pauli in work
to which I have several times alluded.62 Notice that (186) holds meaningfully
throughout phase space (not just in the bound sector), since it involves no
expressions of the form

√
negative. From (186.1) we learn that

K2 = k2 + 2
mE�2 (187)

where

K ≡ conserved numerical magnitude of the Lenz vector KKK

E ≡ energy (conserved numerical value of the Hamiltonian H)
� ≡ angular momentum (conserved numerical value of L)

We learn, in other words, that the new information conveyed by KKK resides not
in its magnitude (which is implicit in the values of E and �) but in its direction
(as indicated by K̂KK ) which—familiarly, but as I now demonstrate—indicates
the orientation of the principal axis of the orbital ellipse. Write

KKK =


K1

K2

0


 , xxx =


x1

x2

0


 , ppp =


 p1

p2

0


 , LLL =


 0

0
�




and observe that (182.2) can be notated

KKK = 1
m ppp×LLL− k

r xxx (188)

Look—as a matter merely of computational convenience—to either of the two
points at which the orbit crosses the principal axis (Figure 9). At such points
it becomes obvious that KKK runs parallel to the principal axis (because ppp × LLL
and xxx both do), which was the point at issue. Dotting (188) into itself, one is
led back again (this time by the most elementary of means) to (187).

62 See §3 in some previously cited Seminar Notes.58
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a

b

f

p

q

K

Figure 9: Notation employed in the following discussion.

Working from the figure, we have � = (a+ f)p = (a− f)q and

E = 1
2mp

2 − k
a+f = 1

2mq
2 − k

a−f

giving E = 1
2m

(
/

a±f
)2 − k

a±f whence

(a± f)2 + k
E (a± f) − /2

2mE = 0

Therefore
a± f = − k

2E ± 1
2

√(
k
E

)2 + 2/2

mE

= − k
2E ± 1

2

√(
K
E

)2 by (187)

from which we conclude that
• the semi-major axis a depends only upon the energy (which for bound

states is negative): a = − k
2E

• the focal length f depends upon E and �, but upon the latter only as it
enters into the construction (187) of K: f = − K

2E

• the semi-minor axis b =
√
a2 − f2 can be described b =

√
−�2/2mE, which

in the circular case a = b entails E = −mk2/2�2.
• the ellipticity of the orbital ellipse can be described

ellipticity e ≡ f/a = K/k (189)

• I assert in advance of proof (see the final paragraph of this section) thatKKK is
directed toward the perihelion (orbital point of closest approach).

The vector ppp(t) traces in momentum space a curve H (projectively related
to C) which was apparently first studied by Hamilton,63 and was called by him

63 See Chapter 24 of T. L. Hankins’ Sir William Rowan Hamilton () and
the second of the Goldstein papers cited above.61 It was in connection with this
work—inspired by the discovery of Neptune ()—that Hamilton was led to
the independent reinvention of the “Hermann-. . . -Hamilton-. . . -Lenz vector.”
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K

K

O

C

P

Qq

Figure 10: Keplerean orbit G superimposed upon the hodograph
H. It was Hamilton’s discovery that the Keplerean hodograph is
circular, dentered on a line which stands normal to the principal
axis at the force center. Q identifies the momentum at perihelion,
and q the associated orbital tangent. The dogleg construction
OP = OC + CP illustrates the meaning of (190), and dashed
lines indicate how points on the hodograph are to be associated with
tangents to the orbit.

the “hodograph.” Working from (188), we have

KKK⊥ ≡ LLL×KKK = 1
m�

2ppp− k
rLLL× xxx

giving

ppp = (m/�2)KKK⊥ + (mk/�2)LLL× x̂xx (190)
= (constant vector of length mK

/ )

+ (vector that traces a circle of radius mk
/ )

From (187) it follows that (radius)2−(displacement)2 = −2mE > 0: we are
brought to the striking conclusion—illustrated in Figure 10, and apparently
overlooked by Newton—that the Keplerean hodograph is circular , and envelops
the origin (or doesn’t) according as the spatial orbit is bound (or or unbound).

While projection of C onto momentum space yields the relatively unfamiliar
curve H just described, projection onto configuration space yields a curve G —
the curve traced by xxx(t)—which is the opposite of unfamiliar, which can fairly
be considered to mark the birthplace of modern physics; the elliptic figure
of G was discovered observationally by Kepler, and Newton’s accomplishment
was to proceed from the figure to the underlying force law. Only after several
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decades did people—people of Jakob Hermann’s generation—look to the reverse
problem, the problem of deducing the orbit from the postulated force law. It is
by entrenched tradition (but also for good reason: ask the founding fathers of
theoretical mechanics) that we look upon

force law −→ orbit

as an allusion to the “direct” problem of dynamics, and it is to an elegantly swift
approach to the solution of the “direct Kepler problem”—devised by Gibbs in
the ’s—that I now turn.64

The first part of Gibbs’ masterful argument (to which I will soon return)
culminates in the “invention” of KKK as a “constant of integration” (and a
constant therefore of the motion).65 We, however, are in position to consider
that point already established, and to proceed directly to the final lines of his
argument. Construct

xxx···KKK = 1
m xxx···(ppp×LLL) − k

r xxx···xxx
= 1

m LLL···(xxx× ppp) − kr

= 1
m�

2 − kr

At (189) we established KKK = keK̂KK, so writing xxx···KKK = ker cos θ we have

r = /2

mk
1

1+e cos θ (191)

which we recognize to be the polar description of an ellipse G, with
• one focus at the origin;
• eccentricity e;
• principal axis pointed out byK̂KK.

I look back now to the first part of Gibbs’ argument. From the equation
of motion

mẍxx = − k
r3 xxx

it follows that d
dt (xxx×mẋxx) = 000, from which Gibbs obtains the angular momentum

vector as a “constant of integration:”

xxx×mẋxx = LLL : constant

64 My source is §61 Example 3 in J. W. Gibbs & E. B. Wilson’s Vector
Analysis (). Gibbs’ primary intent was to demonstrate the utility of his
new “vector analysis,” and it was as an incidental by-product of his argument
that he was led to reinvention of the KKK-vector. As I understand the situation,
is was from Gibbs that Runge borrowed his (similarly pedagogical) discussion,
and from Runge that Lenz borrowed the KKK which he introduced into the “old
quantum theory of the hydrogen atom,” with results which are remembered
only because they engaged the imagination of the young Pauli.58

65 The argument was intended to illustrate the main point of Gibbs’ §61,
which is that “the. . . integration of vector equations in which the differentials
depend upon scalar variables needs but a word.”
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Construct
ẍxx×LLL = − k

r3 xxx×LLL

and notice that

left hand side = d
dt

{
mẋxx×LLL

}
right hand side = −mk

r3 xxx× (xxx× ẋxx)

= −mk
r3

{
(xxx···ẋxx)xxx− (xxx···xxx)ẋxx

}
= −mk

r3

{
(rṙ)xxx− r2 ẋxx

}
= d

dt

{
mk 1

r xxx
}

which entail
ẋxx×LLL = k 1

r xxx+KKK

where
KKK = ẋxx×LLL− k 1

r xxx : constant of integration

precisely reproduces the definition (188) of the “Runge-Lenz vector”! Gibbs
makes no big deal of his accomplishment, cites no reference,66 seems quite
content to move directly to his immediate objective—the construction of G.

In work cited earlier58−60 one component of KKK emerges as a “separation
constant,” and the other components are obtained by “Poisson bracket closure.”
Gibbs’ argument yields all components of KKK simultaneously, as a vector-valued
“constant of integration”. . .which is horse of a different color.

The arguments used above to construct G and H are charming in their
simple brevity, and both hinge on properties of KKK. How does it happen that
such arguments were much better known a century and more ago than they are
today? The answer, I think, can be found in the onset of a pedagogical tradition
which treats the Kepler problem as an incidental instance of the general central
force problem—a tradition which de-emphasizes all that is special about and
peculiar to the Kepler problem (most notably, the existence of the conserved
vector KKK). The material thus eliminated is, of course, precisely the material
most directly relevant to understanding “multiple separability,” “hidden
symmetry” and other deep ramifications of Bertrand’s theorem.

One dangling detail: It has been asserted that “KKK is directed toward the
perihelion.” We are in position now to supply the demonstration. At perihelion,
(188) assumes the form

KKK = (vector of length �2/mrmin directed toward perihelion)
+ (vector of length k directed toward aphelion)

66 Vector Analysis was written by Wilson (Gibbs’ recent student) on the
basis of class notes Gibbs had been using for nearly twenty years. It contains
no bibliography, no reference to the literature apart from an allusion to work
of Heaviside and Föppl which can be found in Wilson’s General Preface.
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But it is an implication of (191) that

(�2/mrmin) − k = ke

so for non-circular orbits (e > 0) the former vector predominates, which secures
the assertion. Note that in the contrary circumstance the sign of KKK⊥ ≡ LLL×KKK
would be reversed, the center of the hodograph would be displaced in the wrong
direction, and the physical consequences (see again Figure 10) would be absurd.
From results now in hand it becomes possible to state that the center of the
orbital ellipse resides at

CCC = −fK̂KK = −(f/ke)KKK = −(a/k)KKK

15. Stokes parameters for Keplerean orbits. The ellipses latent in light beams
and contemplated by Stokes are drawn in “electric 2-space” and detected by
photometric techniques special to optics, but are in all other respects—including
the temporal aspects of their production—homologous to those traced in
physical 2-space by harmonically bound mass points. Bound orbits encountered
in connection with the Kepler problem are similarly figured (“an ellipse is an
ellipse”) and live similarly in “physical 2-space,” but they are (with respect
to the force center: see Figure 11) eccentrically positioned , and their temporal
production is distinctive.67 My objective here will be to develop the details of a
point so small as to be almost obvious: Stoke’s parameters can be pressed into
service as “descriptors of Keplerean orbits” if the circumstances just italicized
are discarded. The discussion will merit the effort if and to the extent that it
opens a window onto the underlying dynamics of the Kepler problem.

Abandonment of “eccentric position” as a consideration makes it natural
to place the coordinate origin at the center of the orbital ellipse. Such a step
may seem alien to the physics of the problem, but is sanctioned by a tradition
which is in fact older than the physics: Kepler himself—whose (pre-Newtonian!)
work sought only to sift kinematical principles from the observational data—
found it convenient (having established in his 1st Law that planetary orbits are
elliptical) to work in the principal axis frame of the orbital ellipse (Figure 12).
And so also will we: see Figure 13, from which I take my notation.

Keplerean ellipses are not generated by a “Lissajous process.” Terms
like “amplitude” and (especially) “relative phase” are therefore alien to the
description of such curves. But the parameters

{
X1,X2

}
which set the size

of the “principal bounding box” are amplitude-like, and easily evaluated: by
implicit differentiation of ux2 + 2wxy + vy2 = 1 we obtain

(ux+ wy)dxdy + (wx+ vy) = 0

67 This fact becomes vividly evident when one compares the Keplerean
hodograph (found by Hamilton to be circular) with the that of an isotropic
oscilator, which is shown in Figure 8 to be elliptical.
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Figure 11: Comparison of the ellipses that arise from the isotropic
oscillator problem with those that arise from the Kepler problem.
The former system (but not the latter) is—both geometrically and
kinematically—homologous to the monochromatic beam problem
contemplated by Stokes.

From dx
dy = 0 we are led therefore to y = −wx/v which, when introduced back

into the equation which marked our point of departure gives (uv−w2)x2/v = 1.
Thus are we led to equations

X2
1 =

v

uv − w2

X2
2 =

u

uv − w2

from which (13)

d2 = X2
1 + X2

1 =
u+ v

uv − w2

can be recovered as a corollary.

It is a remarkable property of Keplerean ellipses—and a property not
shared by oscillator ellipses—that the semi-major axis is �-independent, fixed
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θθ

a

r

Figure 12: Kepler’s approach to the kinematic aspect of the orbital
problem. The angle θ is in celestial mechanics called the “true
anomaly.” Kepler introduces an “auxiliary circle” which permits
him to define also an “eccentric anomaly” θ0. One has68

r =
a(1 − e2)
1 + e cos θ

= a(1 − cos θ0)

giving

tan 1
2θ =

√
1 + e

1 − e
tan 1

2θ0 (i)

Working from his 2nd Law

t

T
=

area of heavily shaded sector
total area of ellipse

(here t denotes elapsed time since perihelion, and T is the period:
according to the 3rd Law T ∼ a

3
2 ) Kepler obtains what has come to

be called“Kepler’s equationKepler’s equationKepler’s equation”

τ = θ0 − e sin θ0 with τ ≡ 2π(t/T ) (ii)

By functional inversion he would have θ0(t), which on introduction
into (i) gives θ(t). Over the years, literally hundreds of solutions
of the functional inversion problem have been proposed, many of
which are described in P. Colwell in his wonderful little book Solving
Kepler’s Problem over Three Centuries ()69. We discover, for
example, that it was Bessel’s Fourier-analytic approach () to
the inversion of (ii) which led to the invention and development of
the theory of Bessel functions.

68 Recall (191) and see Relativistic Classical Fields (), pp. 253–261.
69 See also the end of Goldstein’s §3-8.
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ab

d

ψ

χ

f

X

X

Figure 13: Notation employed in description of Keplerean orbits.
Present conventions are by design consistent with those employed
in §1. Compare Figure 3.

solely and entirely by the energy: a = −k/2E. On the other hand, the
semi-minor axis b depends conjointly upon E and � (and so also, therefore,
do e, f and K): b =

√
−�2/2mE. From 0 � b2 � a2 we discover that E sets a

bound on the possible values of �:

0 � �2 � −mk2/2E ≡ �2max (192)

The upshot of the preceding remarks is that E and � serve to set the figure of
the Keplerean, but one needs K̂KK to fix its orientation.

A convenient measure of the “size” of a Keplerean orbit is provided by

d2 = a2 + b2 = X2
1 + X2

2 : see again Figure 2

= k2

4E2 − /2

2mE =
{

a2 if �2 = 0 : radial orbit
2a2 if �2 = �2max : circular orbit

= k2

4E2

[
1 + (�/�max)2

]
(193)

Alternative measures of the “shape” of such an orbit are provided by the
“eccentricity”

e =
√

1 − (b/a)2 =
√

1 + 2E�2/mk2 =
√

1 − (�/�max)2 (194)
= K/k

and by

tanχ = b/a =
√
−2E�2/mk2 = �/�max (195)

=
√

1 − e2
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The displacement of the force center from the orbital (geometric) center is given
by

f = ea = −
√

1 + 2E�2/mk2 · (k/2E) = −K/2E (196)

and the direction of that displacement (“orientation” of the orbital ellipse) is
given by

tanψ = K2/K1 (197)

Drawing upon these elementary identities

cos 2α =
1 − tan2 α

1 + tan2 α
and sin 2α =

2 tanα
1 + tan2 α

we obtain

cos 2ψ =
K2

1 −K2
2

K2
1 +K2

2

sin 2ψ =
2K1K2

K2
1 +K2

2

cos 2χ =
�2max − �2

�2max + �2
: notate

L2
0 − L2

3

L2
0 + L2

3

sin 2χ =
2�max�

�2max + �2
: notate

2L0L3

L2
0 + L2

3

Proceeding on the basis of (17), we are led to introduce “Keplerean Stokes
parameters”

S0 ≡ d2

S1 ≡ S0 cos 2χ cos 2ψ = d2L
2
0 − L2

3

L2
0 + L2

3

K2
1 −K2

2

K2
1 +K2

2

S2 ≡ S0 cos 2χ sin 2ψ = d2L
2
0 − L2

3

L2
0 + L2

3

2K1K2

K2
1 +K2

2

S3 ≡ S0 sin 2χ = d2 2L0L3

L2
0 + L2

3




(198)

which are transparently redundant in the familiar (“monochromatic”) sense

S2
0 − S2

1 − S2
2 − S2

3 = 0 (199)

It becomes possible at this point to associate the Keplerean orbits which
can be drawn on a given orbital plane—distinguished one from another by
shape, orientation, helicity and size—with the points SSS in a 3-dimensional
“mechanical Stokes space,” and to associate orbits of given shape, orientation
and helicity (size factored out) with points on the surface of a “mechanical
Poincaré sphere.” Helicity reversal is accomplished physically by L3 → −L3

(i.e., by � → −�), which by (198) becomes

S0

S1

S2

S3


 →




+S0

+S1

+S2

−S3


 : north/south hemisphere exchange
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We note in this connection that the parameters (198) are insensitive to

KKK → −KKK : force center/empty focus exchange

It becomes possible to speak of “oppositely polarized” orbits, in exact imitation
of optical practice. . .but to speak of the “non-interference of superimposed
orbits” would be to speak physical celestial nonsense. It would be similarly
empty of physical meaning to speak of a “relative phase,” defined

tan δ ≡ S3/S2

in formal imitation of optical/oscillator realities.

While the parameters Sµ introduced into optics by Stokes bear the physical
dimension of “intensity” (and to that circumstance owe much of their utility),
the “mechanical Stokes parameters” introduced
• into oscillator mechanics at (159)
• into the mechanics of the Kepler problem (198)

are “squared lengths.” In the former case one has E ∼ d2, and it became an easy
matter to construct 1

2mω2Sµ (dimension of energy, with S0 = Hamiltonian) or
1
2 (mω/	)Sµ (dimensionless). In the Keplerean case, on the other hand, one has
this variant of (193)

E ∼ −a−1 = −
√

2 − e2

d
= −

√
1 + (�/�max)2

d

and the relationship S0 and energy (the Hamiltonian) becomes markedly more
complicated. That complication touches on matters which I take up shortly,
but first I would record this remark: from material native to the Kepler problem
(m and k) is not possible to construct constants α and β such that

α (length)2 has the dimensions of energy

β (length)2 is dimensionless

but that importation of 	 —though hardly natural to celestial interpretations
of the Kepler problem!—makes it possible to achieve both objectives, for then
one has access to the (generalized)

Bohr radius = 	2/mk

giving β = 1/(Bohr radius)2 and α = k/(Bohr radius)3. Astronomers would
find it more natural to introduce some “conveniently arbitrary” length, such as
the “astronomical unit;” interconversion is accomplished (in the case k = e2)
by

astronomical unit = 2.828 × 1021 · Bohr radius

It was in direct and literal imitation of Stokes that were were led at (198)
to introduce expressions Sµ(E, �,K̂KK ) which, while they do serve as descriptors
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of Keplerean orbits, can hardly be argued to do their work more efficiently/
informatively than the raw constants of motion upon which they depend. If
(198) were the end of the story, it would not be a story worth telling. But
equations (198) mark not the end of the story, but only its beginning.

At (184) we introduced certain conserved observables Jµ which were found
by heavy calculation—therefore with a satisfying element of surprise—to satisfy

J2
0 − J2

1 − J2
2 − J2

3 = 0 (186.3)

The expressions Sµ are, on the other hand, by nature not “observables” but
number-valued functions of orbital elements, and no element of surprise attaches
to the circumstance that they satisfy

S2
0 − S2

1 − S2
2 − S2

3 = 0 (199)

which they do in consequence of this interesting but elementary identity:

[x2 − y2

x2 + y2

]2

+
[ 2xy
x2 + y2

]2

=
|(x+ iy)2|
(|x+ iy|)2 = 1 : all x and y

Note that �2max ≡ L2
0 = − 1

2mk2/E = numerical value of
{
− 1

2mk2/H ≡ J2
0

}
,

which in combination with (184) means that in J-notation (198) can be rendered

S0 ≡ d2

S1 ≡ S0 cos 2χ cos 2ψ = d2 J
2
0 − J2

3

J2
0 + J2

3

J2
1 − J2

2

J2
1 + J2

2

= d2 J
2
1 − J2

2

J2
0 + J2

3

S2 ≡ S0 cos 2χ sin 2ψ = d2 J
2
0 − J2

3

J2
0 + J2

3

2J1J2

J2
1 + J2

2

= d2 2J1J2

J2
0 + J2

3

S3 ≡ S0 sin 2χ = d2 2J0J3

J2
0 + J2

3




(200)

Use was made here of the “surprising” fact that J2
0 − J2

3 = J2
1 + J2

2 , so at (200)
that same element of surprise has been introduced into (199). Notice next that

d2 =
k2

4E2

L2
0 + L2

3

L2
0

= − 1
2mE

(L2
0 + L2

3)

= numerical value of
{
− 1

2mH (J2
0 + J2

3 )
}

and obtain
S0 = − 1

2mH (J2
0 + J2

3 )

S1 = − 1
2mH (J2

1 − J2
2 )

S2 = − 1
2mH 2J1J2

S3 = − 1
2mH 2J0J3


 (201)

at which point the parameters Sµ have been promoted to the status of conserved
observables, of which (198) refers to the valuations in specific cases. And (199)
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has become a corollary of (186.3): using the mark ∼ to signal surpression of a
distracting

(
1

2mH

)2-factor, we have

S2
1 + S2

2 ∼ (J2
1 + J2

2 )2 = (J2
0 − J2

3 )2 by (186.3)

∴ S2
1 + S2

2 + S2
3 ∼ (J2

0 + J2
3 )2 ∼ S2

0

Equations (201) are much easier to look at that than the equations (198)
from which they descend, and to which they remain equivalent. It becomes
worthwhile to see what (201) have to say when evaluated; one finds

S0 = k2

4E2
− �2

2mE
= d2

S1 = 1
4E2

(K2
1 −K2

2 ) = d2 cos 2χ cos 2ψ

S2 = 1
4E2

2K1K2 = d2 cos 2χ sin 2ψ

S3 =

√
− k2

2mE3
� = d2 sin 2χ




(202)

from which (199) follows as a consequence of (187); i.e., of

K2 ≡ K2
1 +K2

2 = k2 + 2
mE�

2

The geometrical parameters identified in Figure 13 can therefore be described

d2 = S0 (203.1)

cos 2χ = S3/
√
S2

1 + S2
2 ⇒

{
cos2 χ = 1

2

[
S0 +

√
S2

1 + S2
2

]
/S0

sin2 χ = 1
2

[
S0 −

√
S2

1 + S2
2

]
/S0

(203.2)

a2 = 1
2

[
S0 +

√
S2

1 + S2
2

]
(203.3)

b2 = 1
2

[
S0 −

√
S2

1 + S2
2

]
(203.4)

f2 =
√
S2

1 + S2
2 (203.5)

tan 2ψ = S2/S1 ⇒
{

cos2 ψ = 1
2

[
1 + S1/

√
S2

1 + S2
2

]
sin2 ψ = 1

2

[
1 − S1/

√
S2

1 + S2
2

] (203.6)

One has also these descriptions of the physical parameters:

E = −k
2

[
1
2

[
S0 +

√
S2

1 + S2
2

]]− 1
2

(204.1)

� = 1
2

√
mk S3

[
1
2

[
S0 +

√
S2

1 + S2
2

]]− 3
4

(204.2)

K = ke = k
[
2
√
S2

1 + S2
2

/[
S0 +

√
S2

1 + S2
2

]] 1
2

(204.3)

One can use (199) to cast the right sides of the preceding formulae in a great
variety of alternative forms. Equations (203) bear no special relationship to
the Kepler problem; they pertain to the geometry of ellipses-in-general, and
might have been stated in §1. Equations (204), on the other hand, are special
to Keplerean orbits.
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16. A deeper look: parabolic coordinates again. It is a lesson of experience
that to look with fresh depth into Kepler problem one should put on confocal
parabolic eyeglasses.70 Write x for x1, y for x2, introduce parabolic coordinates{
µ, ν

}
by means of equations71

x = 1
2r (µ

2 − ν2)
y = 1

rµν

}
(205)

and construct the associated momenta by covariant vector transformation

pµ = ∂x
∂µpx + ∂y

∂µpy = 1
r (+µpx+ νpy)

pν = ∂x
∂ν px + ∂y

∂ν py = 1
r (−νpx + µpy)

⇓
px = r

µ2+ν2 (µpµ− νpν)

py = r
µ2+ν2 (νpµ + µpν)

The transformation
{
x, y, px, py

}
←−

{
µ, ν, pµ, pν

}
provides an instance of a

so-called “extended point transformation,”72 and its canonicity is therefore
assured. Parabolic coordinates are recommended to our Keplerean attention
by two circumstances:

x2 + y2 = 1
4r2 (µ2 + ν2)2

p2
x + p2

y = r2

µ2+ν2 (p2
µ + p2

ν)

It follows that the Keplerean Hamiltonian can be expressed

H = r2

µ2+ν2

{
1

2m (p2
µ + p2

ν) − 2k
r

}
(206)

Dynamical curves C are inscribed on isoenergetic surfaces ΣE within the
4-dimensional

{
µ, ν, pµ, pν

}
-coordinatized phase space of the problem. For

70 The origin of this insight appears to be lost in dim antiquity. It was
already ancient when imported into the old quantum theory of the hydrogen
atom (Stark effect), and is implicit in work (on the “two centers problem”) done
by Euler in . I suspect one must look to someone of Jacobi’s generation to
find the first explicit application of parabolic coordinates to study of the Kepler
problem; see, in this connection, pp. 261–264 in H. C. Corben & P. Stehle,
Classical Mechanics ().

71 Here r is a “length,” of arbitary value—carefully not to be confused with√
x2 + y2. For related material, see p. 30 in “Reduced Kepler problem in elliptic

coordinates” ().
72 I take my terminology from E. T. Whittaker, Analytical Dynamics (),

p. 293.
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Figure 14: Isotropic oscillator motion on the
{
µ, ν

}
-plane, with

ticks marking progress through half a cycle.

bound orbits E < 0, which we might emphasize by writing E = − 1
2mr2ω2. We

then have
1

2m (p2
µ + p2

ν) + 1
2mω2(µ2 + ν2) = 2k/r (207)

which resembles an equation

1
2m (p2

x + p2
y) + 1

2mω2(x2 + y2) = E

we might write if we had oscillators once again on our minds! The Kepler
problem is from this point of view equivalent to a ω-parameterized population of
isotropic oscillator problems, in each of which we have interest only in solutions
of “energy” 2k/r.

The general solution of (207) can be described

µ(t) = F1 cos(ωt)
ν(t) = F2 cos(ωt+ θ)

}
(208)
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-1.5 -1.25 -1 -0.75 -0.5 -0.25

0.5

1
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Figure 15: (205) has been used to transcibe the preceding figure
onto the

{
x, y

}
-plane. The formerly centered ellipse has become an

ellipse with Keplerean placement. The ticks which formerly marked
half a cycle are now distributed over one complete tour of the orbit.
That is because (µ, ν) and (−µ,−ν) are sent by (205) into the same
point (x, y); tours of

{
µ, ν

}
-ellipse become duplicated tours of its

image. The ticks clearly do not conform to Kepler’s Law of Areas,
for reasons discussed in the text.

δ are arbitrary, but ω ≡
√
−2E/mr2 and F ≡ (F2

1 + F2
2 )

1
2 are constrained to

satisfy ωF =
√

4k/mr, the practical effect of which is this: the prescribed value
of E < 0 sets

ω =
√
−2E/mr2 and F =

√
−2kr/E (209)

Plugging (208) into (205), we use elementary identities to obtain

x(t) = 1
4r

{
F2

1

(
1 + cos(2ωt)

)
− F2

2

(
1 + cos(2ωt+ 2θ)

)}
y(t) = 1

2rF1F2

{
cos(θ) + cos(2ωt+ θ)

}
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which can be expressed

x(t) = x0 + X1 cos(2ωt+ δ1)
y(t) = y0 + X2 cos(2ωt+ δ2)

}
(210)

with

x0 = 1
4r

{
F2

1 − F2
2

}
X1 = 1

4r

√
F4

1 + F4
2 − 2F2

1F2
2 cos 2θ

δ1 = arctan
{

F2
2 sin 2θ

F2
2 cos 2θ − F2

1

}
y0 = 1

4r2F1F2 cos θ
X2 = 1

4r2F1F2

δ2 = θ




(211.1)

If we write F1 = F cosϕ, F2 = F sinϕ and consider F to be set by the energy
but ϕ to be adjustable, then we have

x0 = 1
4rF

2 cos 2ϕ

X1 = 1
4rF

2
√

1 − sin2 2ϕ · cos2 θ

δ1 = arctan
{

sin2 ϕ · sin 2θ
sin2 ϕ · cos 2θ − cos2 ϕ

}
y0 = 1

4rF
2 sin 2ϕ · cos θ

X2 = 1
4rF

2 sin 2ϕ
δ2 = θ




(211.2)

If, in particular, we set F2
1 = F2

2 = 1
2F2 (i.e., if we set ϕ = 45◦) and θ = −90◦

then µ(t) = 1√
2
F cosωt, ν(t) = 1√

2
F cos(ωt − 1

2π) = 1√
2
F sinωt trace on the{

µ, ν
}
-plane a centered circle of radius 1√

2
F while, whether we work from

(211.1) or (211.2), we have x0 = y0 = 0, X1 = X2 = 1
4rF

2, δ1 = 0 and δ2 = −90◦;
(210) therefore read x(t) = 1

4rF
2 cos 2ωt, y(t) = 1

4rF
2 sin 2ωt, which trace (in

duplicate) on the
{
x, y

}
-plane a centered circle of radius 1

4rF
2. The assertion

that centered circles

& on the
{
x, y

}
-plane ←− & on the

{
µ, ν

}
-plane

was implicit in the identity x2 + y2 = 1
4r2 (µ2 + ν2)2 encountered earlier, and

its recovery can be read as a test of the accuracy of (211); it is a special case
of the more general assertion that (Figure 15)

confocal ellipses ←− centered ellipses

and it is to details of the latter that I now turn.



Oscillator physics embedded within the Kepler problem 91

The center of the Cartesian ellipse lies at a distance f from the origin, with

f2 = x2
0 + y2

0

=
(

1
4r

)2{(F2
2 + F2

2 )2 − 4F2
1F2

2 sin2 θ
}

=
(

1
4r

)2
F4

{
1 − sin2 2ϕ · sin2 θ

}
(212.1)

Taking the “size” of the ellipse to be given by the semi-diagonal d of every
circumscribed rectangle (Figure 2), we have

d2 = X2
1 + X2

2

=
(

1
4r

)2{(F2
1 + F2

2 )2 + 4F2
1F2

2 sin2 θ
}

=
(

1
4r

)2
F4

{
1 + sin2 2ϕ · sin2 θ

}
(212.2)

The slope of the principal axis is given by73

tanψ = y0/x0

= tan 2ϕ · cos θ (212.3)

Look to the case cos θ = 0: the principal axis is then coincident with the x-axis,
and we have

a = X1

= 1
4rF

2 in this special case
b = X2

= 1
4rF

2 sin 2ϕ � a in this special case

giving
(focal distance)2 = a2 − b2

=
(

1
4r

)2
F4

{
1 − sin2 2ϕ

}
= f2 as evaluated in this special case

We will proceed in the assumption74 that the lesson of the special case

f = focal distance

does in fact hold generally; i.e., that the ellipses here in question are confocal
at the Cartesian origin. Working from d2 = a2 + b2 and f2 = a2 − b2 with the

73 It is to avoid the uninformative tedium of explicit proof that I am content
here simply to assume that the principal axis passes in every case through the
Cartesian origin. . .

74 . . . and my intent here is similar; proof can be accomplished by the methods
of §1, but the details are heavy and uninformative. I stand in need of a sharper
mode of argument to establish these points which are, in themselves, almost
obvious.
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aid of (212.1&2) we then have

a2 = 1
2 (d2 + f2)

=
(

1
4r

)2
F4 (212.4)

b2 = 1
2 (d2 − f2)

=
(

1
4r

)2
F4 sin2 2ϕ · sin2 θ (212.5)

The shape of the ellipse is described by

eccentricity =
f

a
=

2f
d2 + f2

but more conveniently by the angle χ (see again Figure 3), concerning which
we have

tanχ = b/a = sin 2ϕ · sin θ (212.6)

Equations (212) provide a complete account of the elements of the confocal
ellipse in terms of its centered precursor. Working from (20), we find that Stokes
parameters descriptive of the latter can be described

Σ0 = F2
1 + F2

2

Σ1 = F2
1 − F2

2

Σ2 = 2F1F2 cos θ
Σ3 = 2F1F2 sin θ

= F2

= F2 cos 2ϕ

= F2 sin 2ϕ · cos θ

= F2 sin 2ϕ · sin θ




(213)

while for the former we have

S0 = X2
1 + X2

2

S1 = S0 cos 2χ cos 2ψ = S0
1 − tan2 χ

1 + tan2 χ

1 − tan2 ψ

1 + tan2 ψ

S2 = S0 cos 2χ sin 2ψ = S0
1 − tan2 χ

1 + tan2 χ

2 tanψ
1 + tan2 ψ

S3 = S0 sin 2χ = S0
2 tanχ

1 + tan2 χ

Drawing upon (212) and (213) we have

S0 =
(

1
4r

)2
F4

{
1 + sin2 2ϕ · sin2 θ

}
=

(
1
4r

)2{Σ2
0 + Σ2

3

}
Moreover

tan2 χ = sin2 2ϕ · sin2 θ = Σ2
3/Σ

2
0

tan2 ψ = tan2 2ϕ · cos2 θ = Σ2
2/Σ

2
1
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so we have

S0 =
(

1
4r

)2(Σ2
0 + Σ2

3)

S1 =
(

1
4r

)2(Σ2
0 − Σ2

3)
Σ2

1 − Σ2
2

Σ2
1 + Σ2

2

S2 =
(

1
4r

)2(Σ2
0 − Σ2

3)
2Σ1Σ2

Σ2
1 + Σ2

2

S3 =
(

1
4r

)2 2Σ0Σ3




(214.1)

which describe the Stokes parameters of the Keplerean ellipse in terms of those
of its harmonic precursor. We notice that (214.1) sends
• circular orbits �→ circular orbits (S1 = S2 = 0 ⇐ Σ1 = Σ2 = 0);
• linear orbits �→ linear orbits (S3 = 0 ⇐ Σ3 = 0).

We notice also that Σ2
0 − Σ2

3 = Σ2
1 + Σ2

2 permits further simplification:

S0 =
(

1
4r

)2(Σ2
0 + Σ2

3)

S1 =
(

1
4r

)2(Σ2
1 − Σ2

2)

S2 =
(

1
4r

)2 2Σ1Σ2

S3 =
(

1
4r

)2 2Σ0Σ3




(214.2)

And that from
S2

0 − S2
3 =

(
1
4r

)4(Σ4
0 − 2Σ2

0Σ
2
3 + Σ4

3)

=
(

1
4r

)4(Σ2
0 − Σ2

3)
2

=
(

1
4r

)4(Σ2
1 + Σ2

2)
2

=
(

1
4r

)4(Σ4
1 + 2Σ2

1Σ
2
2 + Σ4

1)

= S2
1 + S2

2

we discover it to be an implication of (214.2)—not at all surprising, yet
gratifying—that

Σ2
0 − Σ2

1 − Σ2
2 − Σ2

3 = 0 ⇒ S2
0 − S2

1 − S2
2 − S2

3 = 0

Equations (214.2) display the parameters Sµ as quadratic combinations of their
harmonic counterparts, and can be expressed

Sµ =
(

1
4r

)4 ΣΣΣ T MµΣΣΣ

with

M0 ≡




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 M1 ≡




0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0




M2 ≡




0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


 M3 ≡




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0
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What is surprising is that the matrices Mµ are, so far as I have been able to
determine, quite devoid of algebraic interest; they would arise if one introduced

“red” Pauli matrices of the design




• 0 0 •
0 0 0 0
0 0 0 0
• 0 0 •




“green” Pauli matrices of the design




0 0 0 0
0 • • 0
0 • • 0
0 0 0 0




and then discarded half of each type, but I can think of no rationale for such a
procedure.

Let (214.2) be notated

S0 = Σ̃2
0 + Σ̃2

3

S1 = Σ̃2
1 − Σ̃2

2

S2 = 2Σ̃1Σ̃2

S3 = 2Σ̃0Σ̃3

. . .with Σ̃µ ≡
(

1
4r

)
Σµ (215)

and look to the algebraic inversion problem. Eliminating Σ̃3 between the outer
pair of equations, we obtain 4Σ̃4

0 − 4S0Σ̃2
0 + S2

3 = 0 giving

Σ̃2
0 = 1

2

{
S0 +

√
S2

0 − S2
3

}
Σ̃2

3 = S0 − Σ̃2
0

= 1
2

{
S0 −

√
S2

0 − S2
3

}

 (216.1)

where sign ambiguity on the radical has been resolved in such a way as to ensure
Σ̃2

0 � Σ̃2
3. Working similarly from the inner pair of equations, we obtain

Σ̃2
1 = 1

2

{√
S2

1 + S2
2 + S1

}
Σ̃2

2 = Σ̃2
1 − S1

= 1
2

{√
S2

1 + S2
2 − S1

}

 (216.2)

where the sign ambituity has been resolved so as to achieve

S2
0 − S2

3 = S2
1 + S2

2 ⇒ Σ̃2
0 − Σ̃2

1 − Σ̃2
2 − Σ̃2

3 = 0

Final sign ambiguities would attend removal of the squares from Σ̃2
1, Σ̃2

2 and
Σ̃2

3, but I am content to omit that fussy discussion.

We note that inversion of (205)—which we are motivated now to renotate

x = µ̃2 − ν̃2

y = 2µ̃ν̃
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—involves manipulations identical to those just sketched. We are brought to
the remarkable conclusion that the transformation which sent centered ellipses
to confocal ellipses replicates itself in Stokes space, where, however, it serves to
describe the transformed figures of the ellipses.

We note also that (215) bears a striking formal similiarity to equations

Q0 = a∗1a1 + a∗2a2

Q1 = a∗1a1 − a∗2a2

Q2 = a∗1a2 + a∗2a1

iQ3 = a∗1a2 − a∗2a1

which arose at (163) from the dynamics of isotropic oscillators, concerning
which. . .

I would stress that the transformation which has been seen to carry
oscillator orbits into Keplerean orbits (and vice versa) does not carry the
temporal aspects of oscillator dynamics into those of Keplerean dynamics. This
was made evident by the ticks in Figure 15, and arises from the circumstance
that when we interpreted (207) as a Kepler-inspired invitation to do “oscillator
physics” we
• demoted the Hamiltonian to the status of a constant (1

2mω2), and
• promoted a constant (2k/r)71 to the status of a Hamiltonian.

The kinematic consequences of this adjustment become clear when one looks
back again to Figure 12; the parabolic transform of harmonic oscillation can,
in notation developed there, be rendered

τ = θ0

while according to Kepler himself we should, for planetary motion, expect

τ = θ0 − e sin θ0

The point at issue can be phrased yet another way: if
• OKepler ≡ CKepler projected onto configuration space
• Ooscillator ≡ Coscillator projected onto configuration space

then we have achieved

OKepler ←−−−−−−−−−−−−−−−−−→
parabolic association

Ooscillator

but the same cannot be said of CKepler and Coscillator, which yield distinct
hodographs when projected onto momentum space.

17. “Mechanical Stokes parameters” as generators of canonical transformations.
Stokes’ parameters Sµ began life as optical “ellipse descriptors”—distinguished
from others (and recommended) by the circumstance that they are accessible to
direct measurement. In mechanical applications the latter (specifically optical)
recommentation loses its force, but the “mechanical Stokes parameters” retain
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their value as ellipse descriptors par excellance and acquire, in addition, a new
(specifically mechanical) claim to our attention. It is the latter—adumbrated
near the end of §12—which I propose now to explore.

We were led at (165) to the identification of

L0(x1, x2, p1, p2) = 1
4mω (p2

1 +m2ω2x2
1) + 1

4mω (p2
2 +m2ω2x2

2)
= 1

2ωHoscillator

L1(x1, x2, p1, p2) = 1
4mω (p2

1 +m2ω2x2
1) − 1

4mω (p2
2 +m2ω2x2

2)

L2(x1, x2, p1, p2) = 1
2mω (p1p2 +m2ω2x1x2)

L3(x1, x2, p1, p2) = 1
2 (x1p2 − x2p1)




(217)

as a quartet of observables natural to the physics of isotropic oscillators, and
at (185/6) to the identification of

J0(x1, x2, p1, p2) =
√
− 1

2mk2/HKepler

HKepler = 1
2m (p2

1 + p2
2) − k(x2

1 + x2
2)

− 1
2

J1(x1, x2, p1, p2) =
√
− m

2H

{
+ 1
mp2J3 − kx1(x2

1 + x2
2)

− 1
2

}
J2(x1, x2, p1, p2) =

√
− m

2H

{
− 1
mp1J3 − kx2(x2

1 + x2
2)

− 1
2

}
J3(x1, x2, p1, p2) = x1p2 − x2p1




(218)

similarly natural to the Kepler problem. Though these quartets differ radically
in design, they share some essential features. To discuss those, we introduce a
generic notation

let Gµ signify
{
Lµ in the oscillatory case
Jµ in the Keplerean case

and notice first off that Gµ bears the physical dimension of angular momentum
or action. With the indispensable assistance of Mathematica one can easily
establish—independently of all that has gone before—that

G2
0 −G2

1 −G2
2 −G2

3 = 0 (219)

and that
[Gi, Gj ] = Gk :

{
i, j, k

}
cyclic on

{
1, 2, 3

}
(220)

from which it follows that (for example)

[G1, G
2
0] = 2G0[G1, G0]

= 2G2[G1, G2] + 2G3[G1, G3]
= 2(G2G3 −G3G2)
= 0
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giving (as direct calculation would laboriously confirm)

[Gi, G0] = 0 : i = 1, 2, 3

This last statement amounts to an assertion that the Gµ are (singly redundant)
constants of the motion:

[H,Gµ] = 0

Their constant numerical values can be read as a reference to the immobile
figure of the orbital ellipse, that reference being direct75

Sµ = 4
mωLµ (221)

in the oscillatory case, but indirect76

S0 = 1
m2k2 J

2
0 (J2

0 + J2
3 )

S1 = 1
m2k2 J

2
0 (J2

1 − J2
2 )

S2 = 1
m2k2 J

2
0 (2J1J2)

S3 = 1
m2k2 J

2
0 (2J0J3)




(222)

in the Keplerean case. We verify that in both cases the Sµ bear the physical
dimension of (length)2. And in both cases one has

S2
0 − S2

1 − S2
2 − S2

3 = 0 (223)

But the Poisson brackets [Sµ, Sν ]oscillator and [Sµ, Sν ]Kepler are readily shown to
be distinct, even though those of Lµ precisely mimic those of Jµ; the discussion,
carried beyond this point, resolves therefore into cases. . . for which the following
general remarks are intended to be preparatory:

If G(x1, x2, p1, p2) is an arbitrary observable and if the associated Lie
derivative operator DG is defined

DG ≡ [G, •] =
∂G

∂x1

∂

∂p1
+

∂G

∂x2

∂

∂p2
− ∂G

∂p1

∂

∂x1
− ∂G

∂p2

∂

∂x2
(224)

then 

x1

p1

x2

p2


−−→



f1 (x1, p1, x2, p2;u)
g1 (x1, p1, x2, p2;u)
f2 (x1, p1, x2, p2;u)
g2 (x1, p1, x2, p2;u)


 = euDG



x1

p1

x2

p2


 (225)

describes the u -parameterized group of canonical transformations generated by
the observable G, where the requirement that

[u ][G ] = action

75 Use (163) in the final equation Sµ = (2	/mω)Qµ of §12.
76 Use (186.3) in (201).



98 Ellipsometry

From Jacobi’s identity, written [A, [B,X]] − [B, [A,X]] = [[A,B], X], we learn
that

DADB − DBDA = D[A,B ] (226)

which sets up a very pretty association of the form

commutators ←→ Poisson brackets

In immediate consequence of (220) we therefore have

DG1DG2 − DG2DG1 = DG3

DG2DG3 − DG3DG2 = DG1

DG3DG1 − DG1DG3 = DG2


 (227)

In short: the Lie operators associated with the observables G1, G2 and G3

give rise to a commutator algebra which is identical to the Poisson bracket
algebra satisfied by the G -observables themselves, and generate a canonical
representation of the associated Lie group.

The transformation (225) lives, of course, in phase space, and when
[H,G ] = 0 it serves to map dynamical flow lines onto dynamical flow lines.
Such maps are, as Sophus Lie was the first to appreciate, most usefully studied
in the infinitesimal limit:



x1

p1

x2

p2


−−→



x1

p1

x2

p2


 +



δx1

δp1

δx2

δp2


 with



δx1

δp1

δx2

δp2


 =



δu · [G, x1]
δu · [G, p1]
δu · [G, x2]
δu · [G, p2]


 (228.1)

The induced adjustment in the value of an arbitrary observable A(x1, p1, x2, p2)
becomes A −→ A+ δA with

δA =
∂A

∂x1
δx1 +

∂A

∂p1
δp1 +

∂A

∂x2
δx2 +

∂A

∂p2
δp2

= δu·
{
− ∂A

∂x1

∂G

∂p1
+

∂A

∂p1

∂G

∂x1
− ∂A

∂x2

∂G

∂p2
+

∂A

∂p2

∂G

∂x2

}
= δu·[G,A ] (228.2)

from which (228.1) can be recovered as special cases
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canonical transform theory in the oscillatory case

Bringing (228) to (217) and drawing upon Mathematica for some computational
assistance, we find more particularly that



δx1

δp1

δx2

δp2


 = δu0 · 1

2




−α−1p1

+α+1x1

−α−1p2

+α+1x2


 if the generator is L0



δx1

δp1

δx2

δp2


 = δu1 · 1

2




−α−1p1

+α+1x1

+α−1p2

−α+1x2


 if the generator is L1



δx1

δp1

δx2

δp2


 = δu2 · 1

2




−α−1p2

+α+1x2

−α−1p1

+α+1x1


 if the generator is L2



δx1

δp1

δx2

δp2


 = δu3 · 1

2




+ x2

+ p2

− x1

− p1


 if the generator is L3




(229)

where α ≡ mω. Drawing upon Sµ ∼ Lµ and [L1, L2] = L3, etc. we find that

L0 induces



dS0 = 0
dS1 = 0
dS2 = 0
dS3 = 0

L1 induces



dS0 = 0
dS1 = 0
dS2 = +δu1 · S3

dS3 = −δu1 · S2

L2 induces



dS0 = 0
dS1 = −δu2 · S3

dS2 = 0
dS3 = +δu2 · S1

L3 induces



dS0 = 0
dS1 = +δu3 · S2

dS2 = −δu3 · S1

dS3 = 0




(230)

To summarize: S0, S1, S2 and S3 are constant (which is to say: surfaces
of constant S0 ditto S1 ditto S2 ditto S3 are invariant) with respect to the
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canonical transformations generated by L0, and reciprocally: S0 is constant
with respect to the transformations generated by L1, L2 and L3. With regard
to the latter, the remainder of the story is told by the following equations:


 dS1

dS2

dS3


 = δu1 · L1


S1

S2

S3


 with L1 ≡


 0 0 0

0 0 +1
0 −1 0





 dS1

dS2

dS3


 = δu2 · L2


S1

S2

S3


 with L2 ≡


 0 0 −1

0 0 0
+1 0 0





 dS1

dS2

dS3


 = δu3 · L3


S1

S2

S3


 with L3 ≡


 0 +1 0

−1 0 0
0 0 0







(231)

which describe rotations about the respective axes of the “mechanical Poincaré
sphere.”77

The result just so easily achieved can be displayed in a variety of other
ways. Proceeding, for example, from (159), we have

dS0 = 2X1 · dX1 + 2X2 · dX2

dS1 = 2X1 · dX1 − 2X2 · dX2

dS2 = 2X2 cos δ · dX1 + 2X1 cos δ · dX2 − 2X1X2 sin δ · dδ
dS3 = 2X2 sin δ · dX1 + 2X1 sin δ · dX2 + 2X1X2 cos δ · dδ


 (232)

Evidently the action of L0 entails dX1 = dX2 = dδ = 0. In the remaining cases
we have


 2X1 −2X2 0

2X2 cos δ 2X1 cos δ −2X1X2 sin δ
2X2 sin δ 2X1 sin δ +2X1X2 cos δ





 dX1

dX2

dδ


 = δu1 ·


 0

+2X1X2 sin δ
−2X1X2 cos δ




etc., which by matrix inversion give

77 Notice in connection with (231) that

[L1, [L2,


S1

S2

S3


]] = L2 L1


S1

S2

S3


 : order reversed on the right

and that L2 L1− L1 L2 = L3, etc. involve “reversed commutators.”
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 dX1

dX2

dδ


 =




δu1 ·


 0

0
−1




1
2δu2 ·


 −X2 sin δ

+X1 sin δ
(X1X2)−1(X2

1 − X2
2) cos δ




1
2δu2 ·


 +X2 cos δ

−X1 cos δ
(X1X2)−1(X2

1 − X2
2) sin δ




(233)

Equations (229) expose the detailed mechanism by which the observables
Lµ(x1, p1, x2, p2) manage to generate within 4-dimensional phase space a
representation of O(3) —a representation which becomes covert when projected
onto 2-dimensional configuration space, where it assumes the form

orbital ellipse −→ orbital ellipse

but which (see again Figure 3) the “mechanical Stokes parameters” render
explicit.

It is, from one point of view, remarkable that L1, L2 and L3 are such happy
bedfellows as they have shown themselves to be, for while

L3(x1, p1, x2, p2) = 1
2 (angular momentum)

is, by Noether’s theorem, reflective of the rotational symmetry of the system,
the non-linear momentum-dependence of L1 and L2 is of such a nature as to
render those conserved observables fundamentally “non-Noetherean.”78 Notice
also that while
• the flying E(t)-vector presented by a monochromatic beam
• the position vector xxx(t) of an oscillatory mass point

move identically

E(t) =
(

E1 cos(ωt+ δ1)
E2 cos(ωt+ δ2)

)
↑

compare

↓

xxx(t) =
(

X1 cos(ωt+ δ1)
X2 cos(ωt+ δ2)

)
and therefore support the same Stokes formalism, only the latter moves in
response to the laws of mechanics; only the latter permits Stokes’ formalism to
be associated with the Hamiltonian apparatus of canonical transform theory,
which possesses no optical counterpart.79

78 See the discussion on p. 18 in “Kepler problem by descent from the Euler
problem” ().

79 “Hamiltonian optics” springs, of course, to mind, but does not fill the bill.
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canonical transform theory in the keplerean case

As has been already remarked, and as Mathematica would quickly confirm, the
Keplerean observables Jµ introduced at (218) mimic the algebraic and bracket
properties (219) and (220) of their oscillatory counterparts Lµ

J2
0 − J2

1 − J2
2 − J2

3 = 0 and
[J1, J2] = J3

[J2, J3] = J1

[J3, J1] = J2

(234)

⇓
[J0, J1] = [J0, J2] = [J0, J3] = 0

but their Cartesian descriptions are relatively complicated, and so also are the
transformations which they generate; the Keplerean counterparts



δx1

δp1

δx2

δp2


 = δuµ · [Jµ,



x1

p1

x2

p2


] (235)

of (229) are in fact—except in the case J3—so complicated that it would serve
no useful purpose to write them out; I must be content merely to indicate
how they might be obtained (how, that is to say, the results burbed out by
Mathematica might most usefully be organized and understood). We proceed
from the observation that the definitions (218) can be notated

J0 = k
√

1
2m(−H)−

1
2

J1 =
√

1
2m(−H)−

1
2B1

J2 =
√

1
2m(−H)−

1
2B2

J3 = x1p2 − x2p1

and that [(−H)−
1
2B, z] = 1

2 (−H)−
3
2B · [H, z] + (−H)−

1
2 · [B, z], to which we

bring the following computed information:

[H,x1] = − 1
mp1

[H, p1] = kx1/r
3 : r ≡

√
x2

1 + x2
2

[H,x2] = − 1
mp2

[H, p2] = kx2/r
3

[B1, x1] = 1
mx2p2

[B1, p1] = 1
mp

2
2 − kx2

2/r
3

[B1, x2] = 1
m (x2p1 − 2x1p2)

[B1, p2] = − 1
mp1p2 + kx1x2/r

3

[B2, x1] = 1
m (x1p2 − 2x2p1)

[B2, p1] = − 1
mp1p2 + kx1x2/r

3

[B2, x2] = 1
mx1p1

[B2, p2] = 1
mp

2
1 − kx2

1/r
3
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This data could be used to construct equations of the type (235) in the cases
µ = 0, 1 and 2, but in the case µ = 3 the results are in simple and immediate:



δx1

δp1

δx2

δp2


 = δu3 · [J3,



x1

p1

x2

p2


] =




+x2

+p2

−x1

−p1




Complications beset the Keplerean theory also for this second reason: the
equations (222) which describe the “mechanical Stokes observables” are more
intricate than their oscillatory counterparts (221). But from (235) it follows
readily that

[J0, Sµ] = 0 : µ = 0, 1, 2, 3

[J1, S0] = − 1
m2k2 J

2
0 · 2J2J3

[J1, S1] = − 1
m2k2 J

2
0 · 2J2J3

[J1, S2] = + 1
m2k2 J

2
0 · 2J1J3

[J1, S3] = − 1
m2k2 J

2
0 · 2J0J2

[J2, S0] = + 1
m2k2 J

2
0 · 2J1J3

[J2, S1] = − 1
m2k2 J

2
0 · 2J1J3

[J2, S2] = − 1
m2k2 J

2
0 · 2J2J3

[J2, S3] = + 1
m2k2 J

2
0 · 2J0J1

[J3, S0] = 0

[J3, S1] = + 1
m2k2 J

2
0 · 4J1J2

[J3, S2] = − 1
m2k2 J

2
0 · 2(J2

1 − J2
2 )

[J3, S3] = 0




(236)

The pattern—such as it is—is disappointingly uninformative, but one fact at
least is clear: the Stokes observables

{
S0, S1, S2, S3

}
respond more simply to

Jµ-generated canonical transformations



δS0

δS1

δS2

δS3


 = δuµ · [Jµ,



S0

S1

S2

S3


]

than do the phase coordinates
{
x1, p1, x2, p2

}
themselves. From (236) follow
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finally the Stokes-Stokes brackets

[S0, S1] =
(

1
m2k2 J

2
0

)2 · 8J3J1J2 = +2S2S3/J0

[S0, S2] =
(

1
m2k2 J

2
0

)2 · 4J3(J2
2 − J2

1 ) = −2S3S1/J0

[S0, S3] = 0

[S1, S2] =
(

1
m2k2 J

2
0

)2 · 4J3(J2
1 + J2

2 )

[S2, S3] =
(

1
m2k2 J

2
0

)2 · 4J0(J2
1 − J2

2 )

[S3, S1] =
(

1
m2k2 J

2
0

)2 · 8J0J1J2




(237)

I would ask no person actually to compute brackets of the types [Jµ, Sν ] and
[Sµ, Sν ], but Mathematica finds the assignment no cause for complaint, and has
independently varified each of the statements (236/7).

Equations (237) are notable for the complexity of the expressions which
appear on the right. Had those expressions been of the form

∑
cµν

αSα then
(237) would have opened a Lie-theoretic door, but the facts are otherwise. We
conclude that in Kepler theory the Stokes observables (222) serve usefully to
describe the orbital figure, but do not participate directly in the group theory
of the problem, which remains the special province of observables Jµ which are
themselves but thinly disguised variants of K and L3. This is in stark contrast
to the oscillatory situation, where Sµ ∼ Jµ do “participate directly in the group
theory.” But in the latter context a different kind of crookedness intrudes: one
still has S3 ∼ L3, but in the absence of an oscillatory Runge-Lenz vector it
becomes impossible to write S1,2 ∼ K. Though J Kepler

µ and J oscillator
µ share

important properties, their dynamical roots are seemingly quite distinct.

18. How Gibbs might have approached the isotropic oscillator problem. Gibb’s
magically efficient treatment of the Kepler problem (summarized near the end
of §14) was intended mainly to demonstrate the utility of his “vector analysis.”
The question arises: Can Gibbs’ method be brought to bear also on other
central force problems? A quick check shows that the argument which yielded
the Runge-Lenz vector K as a natural vector-valued constant of integration
works only in the Keplerean case FFF = −k 1

r3 xxx. So the question becomes: Can
a variant of Gibbs’ method be devised which works with other central forces?
Which works, in particular, in the oscillatory case FFF = −kxxx, which we (like
Bertrand before us) have seen to be in several respects the Kepler problem’s
most natural companion?

Gibbs’ argument makes essential use of the “cross product,” and in that
respect gains leverage from the circumstance that the orbital plane resides in
3-space. Let us agree, therefore, to work 3-dimensionally. How to proceed? I
take my cue from a classic paper by D. M. Fradkin,80 cited by Goldstein as a

80 “Existence of the dynamic symmmetries O4 and SU3 for all classical central
potential problems,” Progress of Theoretical Physics 37, 798 (1967).
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source for discussion of “generalized Runge-Lenz vectors,” though the author’s
intention actually lay elsewhere, and was rather more grand.

Gibbs’ Vector Analysis provides no index, but I am satisfied that such an
index, if it existed, would contain no entry at the word “matrix.” Neither the
word, nor the notation, nor more than a hint of the idea are to be found within
those famous pages.81 In its stead one encounters the “dyadic,” to the theory
and applications of which he devotes the last third of his text. Given a pair of
vectors aaa and bbb, Gibbs writes aaabbb where Dirac writes |a)(b | and we might write
aaa⊗ bbb to describe the tensor (or “outer”) product, which Gibbs calls a “dyad.”
He adopts the terminology

dyadic = dyad + dyad + · · ·

and other quaint locutions with which we need not concern ourselves. Dyadics
are by nature operators, and acquire matrix-valued representations when
referred to a basis

|a)(b | =
∑ ∑

aibj |i)(j| with ai ≡ (i |a), bj ≡ (b |j)

Gibb’s scheme was in many ways anticipatory of Dirac’s (but much less elegantly
rendered), and one does still encounter occasional modern proponents.82 But I
have progressed already far enough into the subject to say what I have to say,
and feel no temptation to proceed farther.

Given the system mẍxx = −kxxx, Gibbs might (I suggest, though in the
concluding sections of his book—where he treats precisely this system—he
evidently didn’t) find it natural to introduce the dyadic

K ≡ 1
2mppp⊗ ppp+ 1

2kxxx⊗ xxx (238.1)

and to observe that

d
dtK = 1

2m ṗpp⊗ ppp + 1
2m ppp⊗ ṗpp + 1

2k ẋxx⊗ xxx+ 1
2k xxx⊗ ẋxx

= − k
2m xxx⊗ ppp− k

2m ppp⊗ xxx+ k
2m ppp⊗ xxx+ k

2m xxx⊗ ppp = 0

81 For reasons which are, I think, intelligible. Gibbs, the Yale Yankee, was at
pains to separate himself from the “Quaternionic Wars” which had raged for
more than sixty years on the other side of the Atlantic, and which had recently
established a secure beachhead at Harvard (where his co-author had done his
undergraduate work). Matrix theory derives from a memoir written by Arthur
Cayley in 1858, and was cultivated at Harvard by Benjamin Pierce and his son
Charles Sanders Pierce. I suspect that Gibbs found it all too easy to associate
matrix theory (which Born and Heisenberg as late as 1925 considered esoteric)
with the body of mathematics he sought to supplant.

82 See, for example, Goldstein’s §5-2.
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according to which K is a dyadic-valued (non-Noetherean) constant of the
motion. In matrix notation we have K̇ = O with

K ≡ 1
2m


 p1p1 p1p2 p1p3

p2p1 p2p2 p2p3

p3p1 p3p2 p3p3


 + 1

2k


x1x1 x1x2 x1x3

x2x1 x2x2 x2x3

x3x1 x3x2 x3x3


 (238.2)

Whether one works from (238.1) or from (238.2), it follows as an immediate
consequence of xxx···(xxx× ppp) = ppp···(xxx× ppp) = 000 that

KL = 000 (239)

i.e., that the angular momentum vector L is an eigenvector of K, with
null eigenvalue. From the manifest real symmetry of K we know it to be the
case that
• All eigenvalues of K are necessarily real, and
• Eigenvectors associated with distinct eigenvalues are necessarily orthogonal.

Let the K-spectrum be notated
{
0, λ1, λ2

}
. Mathematica provides complicated

expressions for λ1,2 from which follow

tr K = λ1 + λ2 = 1
2m ppp···ppp+ 1

2kxxx···xxx
= H : the oscillator Hamiltonian

det K = λ1 ·λ2 · 0 = 0

λ1 ·λ2 = k
4m

{
(ppp···ppp)(xxx···xxx) − (ppp···xxx)2

}
= k

4m (xxx× ppp)···(xxx× ppp)

= k�2/4m

To simplify progress beyond this point (i.e., to obtain expressions simple enough
to comprehend) let us now suppose the orbit to lie in the

{
x1, x2

}
-plane; then

x3 = p3 = 0, and we have

K = 1
2m


 p1p1 p1p2 0
p2p1 p2p2 0

0 0 0


 + 1

2k


x1x1 x1x2 0
x2x1 x2x2 0

0 0 0


 ≡


H1 H0 0
H0 H2 0
0 0 0




L =


 0

0
x1p2−x2p1


 ≡


 0

0
�




Borrowing our methods now from §1, we observe that the eigenvalues of

H ≡
(
H1 H0

H0 H2

)
(240)

can be described

λ1

λ2

}
= 1

2E ±
√

( 1
2D)2 +H2

0 with
{
E ≡ H1 +H2

D ≡ H1 −H2

= 1
2E ±

√
( 1
2E)2 − (H1H2 −H2

0 )

= 1
2E ±

√
( 1
2E)2 − k�2/4m (241)
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in terms of which we have83

H1 = λ1+λ2
2 + λ1−λ2

2 cos 2ψ

H2 = λ1+λ2
2 − λ1−λ2

2 cos 2ψ

H0 = λ1−λ2
2 sin 2ψ


 (242)

and the normalized eigenvectors become very easy to describe:

H

(
cosψ

+ sinψ

)
= λ1

(
cosψ

+ sinψ

)
and H

(
− sinψ
cosψ

)
= λ2

(
− sinψ
cosψ

)

In the latter connection we notice that

cosψ =
√

1
2 (1 + cos 2ψ)

sinψ =
√

1
2 (1 − cos 2ψ)

cos 2ψ = D
λ1 − λ2

= D√
D2 + 4H2

0

= D√
E2 − k�2/m

Note also the striking simplifications which come about when H is delivered to
us in “already diagonalized” form: H0 = 0.

Look now to the equations which describe dynamical flow in the phase
space of a 2-dimensional isotropic oscillator

x1(t) = X1 cos(ωt+ δ1)
p1(t) = −mωX1 sin(ωt+ δ1)
x2(t) = X2 cos(ωt+ δ2)
p2(t) = −mωX2 sin(ωt+ δ2)


 (243)

By quick computation

H1 = 1
2k · X2

1

H2 = 1
2k · X2

2

H0 = 1
2k · X1X2 cos δ where again: δ ≡ δ2 − δ1√

H1H2 −H2
0 = 1

2k · X1X2 sin δ

and we have been led to the brink of a “reinvention” of the mechanical Stokes
parameters (159):

S0 = X2
1 + X2

2 = 2
mω2 · (H1 +H2)

S1 = X2
1 − X2

2 = 2
mω2 · (H1 −H2)

S2 = 2X1X2 cos δ = 2
mω2 · 2H0

S3 = 2X1X2 sin δ = 2
mω2 · 2

√
H1H2 −H2

0




(244)

83 See again Figure 1.
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But we learned already in §1 that if
√
uv − w2 is real then(

x1

x2

)T (
u w
w v

) (
x1

x2

)
= 1

describes a centered ellipse of size

S0 = X2
1 + X2

2 = 1
uv−w2 · (u+ v)

of which 1
uv−w2 · (u− v) = S0 cos 2χ cos 2ψ ≡ S1

1
uv−w2 · 2w = S0 cos 2χ sin 2ψ ≡ S2

1
uv−w2 · 2

√
uv − w2 = S0 sin 2χ ≡ S3

serve, after the manner indicated in Figure 3, to describe the orientation and
figure. Comparison with (244) leads us to set

2
mω2H1 = u

uv−w2

2
mω2H2 = v

uv−w2

2
mω2H0 = w

uv−w2

or—which is by uv − w2 =
[(

2
mω2

)2(H1H2 −H2
0 )

]−1 the same—to write(
u w
w v

)
= mω2

2
1

det H

(
H1 H0

H0 H2

)

and brings us to the conclusion that the elliptical orbit of the oscillator can be
described (

x1

x2

)T (
H1 H0

H0 H2

) (
x1

x2

)
= 2

mω2 det H

In the 3-dimensional case

xxxTKxxx = 2
mω2 (product of non-zero eigenvalues of K) (245)

serves to describe the orbit as a plane curve in 3-space.84

To summarize: the methods which led Gibbs85 so effortlessly/naturally to
the “invention” of the Runge-Lenz vector K and to the Keplerean orbit (191)
fail when applied to the isotropic oscillator. But a closely related method,
which makes use of material developed in the final (dyadic) chapters of Vector
Analysis, can be devised. It emerges that the oscillatory counterpart of the
conserved vector K is a conserved dyadic K, representable as a symmetric

84 The truth of this proposition was known already to Fradkin, but his
argument is unconvincing; he provides only the illustrative details of a very
simple special case.

85 See again pp. 77–78.
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matrix K of the specialized design (238.2). One looks (most efficiently with
the aid of Mohr’s construction: (242)) to the spectral properties of K, as
summarized in the “spectral resolution” which Gibbs (in clear anticipation of
Dirac) might notate

K = K1λ1K1 + K2λ2K2 + L 0L

The orthonormal eigenvectors K1 and K2 identify the principal axes of the
orbital ellipse, and the eigenvalues assemble themselves (almost spontaneously)
into Stokes parameters descriptive of the orbital figure.

The novelty of the preceding discussion resides entirely in the arrangement
of the points of emphasis; we have simply poured old material (see again, for
example, (163/165)) into a Gibbs-shaped bottle. It would be interesting on
another occasion to devise a formalism which provides a unified account of the
Kepler/oscillator problems, and to make make more explicit the details of their
“parabolic interconvertability.”

PART III: APPLICATIONS TO QUANTUM MECHANICS

I have on two recent occasions—at length in “Reduced Kepler problem in
elliptic coordinates” (), and more succinctly in “Classical/quantum theory
of 2-dimensional hydrogen” ()—discussed comparatively the quantum
mechanics (spectrum and eigenfunctions) of the Kepler and isotropic oscillator
problems, in terms which emphasize the “parabolic equivalence” of those two
systems, and which are also in other ways consonant with the present discussion.
I do not propose to repeat that material here. I inquire instead into the
placement of the “orbital” concept within quantum mechanics—a concept which
Bohr injected (borrowed from classical mechanics) and which Schrödinger (or
so it is commonly imagined) effectively displaced—and into the emergence of
Stokes parameters as natural descriptors of the “quantum orbits” presented by
the two systems in which (quantum echo of Bertrand) we have special interest.

19. “Orbits of the moments” for the isotropic quantum oscillator. We look to the
system

H = 1
2m (p2

1 + p2
2) + 1

2k(x
2
1 + x2

2) (246)

If A refers to a time-independent observable, and |ψ) to the state of the system,
then

〈A〉 ≡ (ψ|A|ψ) = expected average of many A -measurements

and—independently of whether one has elected to work in the Schrödinger
picture or the Heisenberg picture—one has

d
dt 〈A〉 = 1

i� 〈AH − HA〉 (247)
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The commutator on the right is especially easy to evaluate when H is of the
quadratic design (246); as particular instances of (247) one has

d
dt 〈x1〉 = 1

m 〈p1〉
d
dt 〈p1〉 = −k〈x1〉
d
dt 〈x2〉 = 1

m 〈p2〉
d
dt 〈p2〉 = −k〈x2〉




(248)

Ehrenfest’s theorem asserts86 that the motion of the moments on the left is
approximately classical in all cases, but in the oscillatory case (246) it is exactly
classical for all states |ψ). This development is as remarkable as it is elementary,
and merits several kinds of commentary.

If |ψ) is an energy eigenstate87

|ψ) = |E)e−
i
�
Et

then (for separate reasons on right and left)
d
dt 〈A〉 = 1

i� 〈AH − HA〉 becomes 0 = 0

which is, however, not so uninteresting as it might appear: the remark vividly
underscores the force of the term “time-independent quantum mechanics,” and
demonstrates that to obtain motion rather than stasis in the observable output
of that theory the wave function must present a non-trivial superposition of
energy eigenstates:

|ψ) = c1|E1)e−
i
�
E1t + c2|E2)e−

i
�
E2t : E1 �= E2 (249)

Observable motion, in other words, is an attribute not of energy eigenstates but
of wave packets. And in the instance (248) we have

(E|x1|E) = (E|p1|E) = (E|x2|E) = (E|p2|E) = 0 (250)

for all oscillator eigenstates.

The equations (248) are readily decoupled by differentiation; one finds that
each of the first moments 〈x1〉, 〈p1〉, 〈x2〉 and 〈p2〉 moves in such a way as to
satisfy

d2

dt2 〈•〉 = −ω2〈•〉 (251)

with ω2 ≡ k/m. Whether we work from (248) or from (251), we are—precisely
as in classical dynamics—led to solutions of the form

〈x1〉t = 〈x1〉0 cosωt+ 1
mω 〈p1〉0 sinωt

〈p1〉t = −mω〈x1〉0 sinωt+ 〈p1〉0 cosωt
〈x2〉t = 〈x2〉0 cosωt+ 1

mω 〈p2〉0 sinωt
〈p2〉t = −mω〈x2〉0 sinωt+ 〈p2〉0 cosωt


 (252)

86 See “Status and some ramifications of Ehrenfest’s theorem” ().
87 I slip here into the Schrödinger picture, where I will find it convenient to

remain.
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But no longer are we free (as in classical dynamics we were) to assign values
independently to 〈x1〉0, 〈p1〉0, 〈x2〉0 and 〈p2〉0; those—correlated!—numbers are
implicit in the specification of |ψ)0. The moving quartet

{
〈x1〉t, 〈p1〉t, 〈x2〉t, 〈p2〉t

}
traces what we may agree to call a “quantum flow line” in phase space,88 while

{
〈x1〉t, 〈x2〉t

}
traces a “quantum orbit” in configuration space. It follows from what has been
said that the latter curves are centered ellipses—curves describable by a set of
“quantum Stokes parameters” Sµ. The figure of such an ellipse is implicit in
the specification of |ψ)0. We will not rest until we possess formulæ which

describe Sµ directly in terms of |ψ)0

But look now to the motion of the second moments 〈x2
1〉, 〈p2

1〉, 〈x2
2〉 and

〈p2
2〉, which in consequence of (250) are also centered second moments:

〈(x1 − 〈x1〉)2〉 = 〈x2
1〉, etc.

Drawing upon [x, p] = i	 and the fundamental identity [AB,C] = A[B,C]+[A,B]C
we find

[x2, p2] = 2i	(xp + px) (253.1)

to which (in order to achieve algebraic closure) we must adjoin

[x2, xp + px] = +4i	 x2 (253.2)
[p2, xp + px] = −4i	p2 (253.3)

Returning with this information to (247) we obtain

d
dt 〈x

2〉 = + 1
2m · 2〈xp + xp〉

d
dt 〈p

2〉 = − 1
2k · 2〈xp + xp〉

}
(253.4)

It follows (by way of a consistency check) that

d
dt 〈 1

2mp2+ 1
2kx2〉 = 0 (253.5)

88 Note, however, that, in consequence of (250), if |ψ) is an energy eigenstate
then we are back again to stasis: the “flow line” has become degenerate—a
“stagnation point” at the origin. This remark pertains, I would emphasize, not
just to the ground state, but to any energy eigenstate, however great may be
the value of E.
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and more interestingly that

d
dt 〈 1

2mp2− 1
2kx2〉 = −ω2〈xp + xp〉

d
dt 〈xp + xp〉 = 4〈 1

2mp2− 1
2kx2〉

}
(253.6)

It follows from this last pair of equations that both 1
2mp2− 1

2kx2 and xp + xp
satisfy

d2

dt2 〈•〉 = −(2ω)2〈•〉 (253.7)

which is to say: they oscillate with doubled frequency. Writing

x2 = 2 1
k · 1

2

[(
1

2mp2+ 1
2kx2

)
−

(
1

2mp2− 1
2kx2

)]
= 1

2

(
x2 + 1

kmp2
)

+ 1
2

(
x2 − 1

kmp2
)

p2 = 2m · 1
2

[(
1

2mp2+ 1
2kx2

)
+

(
1

2mp2− 1
2kx2

)]
= 1

2

(
p2 + kmx2

)
+ 1

2

(
p2 − kmx2

)
we are led to the conclusion that

〈x2〉t =
〈

1
2

(
x2 + 1

km p2
)〉

0
+

〈
1
2

(
x2 − 1

km p2
)〉

0
cos 2ωt

+ 1
2mω

〈
xp + px

〉
0

sin 2ωt

〈p2〉t =
〈

1
2

(
p2 + kmx2

)〉
0

+
〈

1
2

(
p2 − kmx2

)〉
0
cos 2ωt

+ mω
2

〈
xp + px

〉
0

sin 2ωt




(253.8)

By way of commentary: classically we have

x(t) = x0 cosωt+ 1
mωp0 sinωt

⇓
x2(t) = 1

2 (x2
0 + 1

kmp
2
0) + 1

2 (x2
0 − 1

kmp
2
0) cos 2ωt+ 1

2mω (2x0p0) sin 2ωt

and from (252) it follows that an identical statement pertains to the motion of
〈x〉2t . While the result just achieved does resemble (253.8), and does expose the
elementary origin of frequency doubling, it must be borne in mind that

〈x2〉 �= 〈x〉2, etc.

so (253.8) is not a corollary of (252), but stands on its own independent legs.

It is important to appreciate that the operators x and p which enter into the
statements (253) are understood in each instance to wear the same subscripts
(all 1 else all 2).89 Systems with two degrees of freedom supply, however, also

89 The statements pertain with equal force therefore to the quantum theory
of one-dimensional oscillators; see p. 13 of my Ehrenfest essay.86
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a population of second moments of mixed design: 〈x1x2〉, 〈x1p2〉, 〈p1x2〉, 〈p1p2〉.
Working from (246) we have

[x1x2,H ] = +i	 · 1
m (x1p2 + p1x2)

[x1p2,H ] = i	 · 1
m (p1p2 − kmx1x2)

[p1x2,H ] = i	 · 1
m (p1p2 − kmx1x2)

[p1p2,H ] = −i	 · k (x1p2 + p1x2)


 (254)

from which we conclude that

[(x1p2 + p1x2),H ] = +i	 · 2 1
m (p1p2 − kmx1x2)

[ 1
m (p1p2 − kmx1x2),H ] = −i	 · 2k (x1p2 + p1x2)

}
(255)

(therefore that the two operators in question are again solutions of (253.7)) and
that 1

2mp1p2− 1
2kx1x2 and x1p2−x2p1 are constants of oscillator motion; indeed,

we have in
H1 ≡ 1

2mp1p1 + 1
2k x1x1

H2 ≡ 1
2mp2p2 + 1

2k x2x2

H0 ≡ 1
2mp1p2 + 1

2k x1x2

L ≡ x1p2 − x2p1


 (256)

quantum analogs of precisely the observables to which (in §18) we were led by
“Gibbs’ construction,” each of which commutes with the Hamiltonian (246) of
the isotropic quantum oscillator.

Proceeding now in imitation of (217) we introduce conserved observables

L0 ≡ 1
2ω (H1 + H2) ∼ H

L1 ≡ 1
2ω (H1 − H2)

L2 ≡ 1
ω H0

L3 ≡ 1
2 L


 (257)

(each of which bears the physical dimension of action) and observe that

L2
0 − L2

1 − L2
2 − L2

3 = ( 1
2	)2 I (258.1)

[L1, L2] = i	L3, [L2, L3] = i	L1, [L3, L1] = i	L2 (258.2)

and (therefore, redundantly with what we already know)

[L0, L1] = [L0, L2] = [L0, L3] = 0 (258.3)

These equations90 mimic (219/220), but to establish precise contact with
the related material presented in §2–8 of Jauch & Rohrlich12 we must make some

90 Recall Dirac’s association:

Poisson bracket ←→ 1
i� commutator
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slight adjustments. Let non-hermitian operators a1, a2, b1 ≡ a+
1 and b2 ≡ a+

2 be
introduced in direct imitation (compare (151)) of (145); i.e., by constructions
of the design

a ≡ 1√
2

{√
mω/	 · x + i

√
1/mω	 · p

}
a+ ≡ b ≡ 1√

2

{√
mω/	 · x − i

√
1/mω	 · p

}

 (259)

Such operators are dimensionless, satisfy (compare (146))

[a, b ] = I (260)

and permit one to write

L0 = �

2 (b1a1 + b2a2) + �

2 I

L1 = �

2 (b1a1 − b2a2)

L2 = �

2 (b1a2 + b2a1)

L3 = i�

2 (b1a2 − b2a1)




(261)

If, with Jauch & Rohrlich, we introduce dimensionless observables

Σ0 ≡ b1a1 + b2a2 = 2
�
L0 − I

Σ1 ≡ b1a1 − b2a2 = 2
�
L1

Σ2 ≡ b1a2 + b2a1 = 2
�
L2

Σ3 ≡ i(b1a2 − b2a1) = 2
�
L3


 (262)

then (258) become

Σ2
1 + Σ2

2 + Σ2
3 = (Σ0 + I)2 − I

= Σ2
0 + 2Σ0 (263.1)

[Σ1,Σ2] = 2iΣ3, [Σ2,Σ3] = 2iΣ1, [Σ3,Σ1] = 2iΣ2 (263.2)

[Σ0,Σ1] = [Σ0,Σ2] = [Σ0,Σ3] = 0 (263.3)

which agree precisely with equations presented on p. 45 of Jauch & Rohrlich.
Apart from a dimensional factor, my operators Lµ and their “Stokes operators”
Σµ differ only with respect to management of the “zero-point energy term”
(which they, who are concerned the oscillatory motion of a particle but with
electromagnetic plane waves, are content to abandon). In view of our present
interest in the geometrical design of particulate orbits it becomes most natural to
work with “mechanical Stokes operators” Sµ which bear the physical dimension
of (length)2:

S0 ≡ 1
mωL0 = �

2mωΣ0 + insignificant constant

S1 ≡ 1
mωL1 = �

2mωΣ1

S2 ≡ 1
mωL2 = �

2mωΣ2

S3 ≡ 1
mωL3 = �

2mωΣ3




(264)
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It becomes natural to associate “quantum mechanical Stokes parameters” Sµ
with quantum states |ψ) and mixtures ρρρ

Sµ =
{

(ψ |Sµ|ψ) : pure state
trace(ρρρSµ) : mixed state (265)

and to inquire into the status of the anticipated statement91

S2
0 � S2

1 + S2
2 + S2

3 (266)

But before we can address such issues we must confront this prior question:
What can the parameters Sµ possibly mean in a context where (as emphasized
in connection with (249)) the “orbit-tracing pencil”

{
〈x1〉t, 〈x2〉t

}
hovers at the

origin whenever |ψ) is an energy eigenfunction? The question becomes: Why
does the pencil hover, and what must we do to get it into motion. . . tracing the
ellipses to which the Stokes parameters presumably refer?

Look again, in the interest of expository simplicity, to the one-dimensional
oscillator: we have92

H |n) =En|n) with H = 	ω(ba + 1
2 I)

En = (n+ 1
2 )	ω

with
|n) = 1√

n!
bn|0) (267)

where the ground state |0) is defined by the conditions a|0) = 0 and (0|0) = 1.
If |ψ)0 =

∑
|n)(n|ψ)0 then

|ψ)t = e−
i
�

1
2 �ωt

∑
|n)e−

i
�
n�ωt(n|ψ)0 (268)

All harmonics of ω are, in the general case, present in the motion of |ψ)t, and
present therefore in the motion of

〈A〉t =
∑
m,n

ei(m−n)ωt
0(ψ|m)(m|A|n)(n|ψ)0 (269)

How, in this light, does it happen that harmonics are absent from the motion
of 〈x〉t? The answer lies actually close at hand, for it is an implication of (259)
that

x = 1
2

√
2�

mω︸ ︷︷ ︸(b + a) (270)

|—amplitude of classical oscillator with energy E = 	ω

91 Jauch & Rohrlich (who work in a different physical context) assert that the
statement is true but “much harder to prove than the corresponding inequality
in the classical case,” and that equality can hold only if the state is pure. They
supply, however, no supporting argument, and cite no reference.

92 See, for example, quantum mechanics (), Chapter 2, pp. 48 et seq .
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and of (267) that

(m|(b + a)|n) =
√
n+ 1(m|n+ 1) +

√
m+ 1(m+ 1|n)

= 0 unless m− n = ±1

The matrix X ≡ ‖(m|x|n)‖ is therefore quite sparce:

X = 1
2

√
2�

mω




0
√

1 0 0 0 · · ·√
1 0

√
2 0 0 · · ·

0
√

2 0
√

3 0 · · ·
0 0

√
3 0

√
4 · · ·

0 0 0
√

4 0 · · ·
...

...
...

...
...


 (271)

From the design of X it follows that

(ψ|x|ψ) = 1
2

√
2�

mω

{√
1(ψ∗

0ψ1 + ψ∗
1ψ0) +

√
2(ψ∗

1ψ2 + ψ∗
2ψ1) + · · ·

}
(272)

= 0 unless




ψ0

ψ1

ψ2

ψ3

ψ4
...




presents at least one pair of
contiguous non-zero elements

The 0’s on the principal diagonal of X reproduce the statements (compare (250))

〈x〉 ≡ (ψ|x|ψ) = 0 if |ψ) is an energy eigenstate

while the design of (272) accounts for the absence of harmonics in the motion
of 〈x〉t: the e

i
�
(m−n)ωt-factors evident in (269) are annihilated except in cases

m− n = ±1. From

X2 = 1
4

2�

mω




1 0
√

1 · 2 0 0 · · ·
0 1 + 2 0

√
2 · 3 0 · · ·√

1 · 2 0 2 + 3 0
√

3 · 4 · · ·
0

√
2 · 3 0 3 + 4 0 · · ·

0 0
√

3 · 4 0 4 + 5 · · ·
...

...
...

...
...


 (273)

it becomes apparent that

〈x2〉t = 1
4

2�

mω

{ ∞∑
0

(2n+ 1)ψ∗
nψn (274)

+
∞∑
0

√
(n+ 1)(n+ 2)

[
ei2ωtψ∗

nψn+2 + conjugate
]}
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This result shows in explicit detail how it comes about that
• 〈x2〉t possesses a DC component for every |ψ);
• the oscillatory component of 〈x2〉t—if present—buzzes at the first harmonic

of the fundamental frequency ω;
• an oscillatory component will be present if and only if, when parsing the

sequence
{
ψ0, ψ1, ψ2, . . .

}
, one encounters ψnψn+2 �= 0 at least once.

From
p = i

√
�mω

2 (b − a)

one is led to similarly explicit descriptions of P ≡ ‖(m|p|n)‖ and P2, whence of
〈p〉t and 〈p2〉t, but I will not pursue those details. As a check on the accuracy
of results thus obtained one has

H = 1
2m

{
P2 +m2ω2X2

}
= 	ω




0 + 1
2 0 0 0 · · ·

0 1 + 1
2 0 0 · · ·

0 0 2 + 1
2 0 · · ·

0 0 0 3 + 1
2 · · ·

...
...

...
...




We are in position now to look computationally into credentials of the
proposition93 that

quantum mechanics → classical as the quantum numbers become large

To that end, let us suppose that the non-zero elements of
{
ψ0, ψ1, ψ2, . . .

}
are

nested in the neighborhood of some large n{
0, 0, . . . , 0, 0, ψn, ψn+1, . . . , ψn+k︸ ︷︷ ︸, 0, 0, . . .} (275.1)

nest

which in the simplest instance entails

1√
k+1

{
0, 0, . . . , 0, 0, 1, 1, . . . , 1, 0, 0, . . .

}
(275.2)

Then

〈x〉0 = 1
2

√
2�

mω
1
k+1




1
1
1
...
1
1




T 


0 √
n+1 0 · · · 0 0

√
n+1 0 √

n+2 · · · 0 0
0 √

n+2 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 √
n+k

0 0 0 · · · √
n+k 0







1
1
1
...
1
1




= 1
2

√
2�

mω 2 1
k+1

k∑
j=1

√
n+ j

93 See, for example, §15–4 in L. E. Ballentine, Quantum Mechanics ().
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But94

1
k+1

k∑
j=1

√
n+ j =

√
n 1
k+1

k∑
j=1

{
1 + 1

2nj + · · ·
}

=
√
n k
k+1 + k

4
√
n

+ · · ·
∼

√
n : n ) k ) 1

so we have

〈x〉0 ∼
√

2
mω2 	ωn = amplitude of classical oscillator with energy E = 	ωn

And if we “turn on the clock” the boldface 2 becomes eiωt + e−iωt = 2 cosωt
giving

〈x〉t = 〈x〉0 cosωt (276)

So for states |ψ) of the design (275.2) the first moment moves “classically”
(oscillates, with the anticipated amplitude). But the point of the discussion
emerges only when one looks in this light to the second moment:

States of the nested design (275) render irrelevant all but a (k + 1)×(k + 1)
submatrix of X2, which lives far down the principal diagonal, and looks like this:

1
4

2�

mω




(n+0)+(n+1) 0
√

(n+1)(n+2) 0 · · ·
0 (n+1)+(n+2) 0

√
(n+2)(n+3) · · ·√

(n+1)(n+2) 0 (n+2)+(n+3) 0 · · ·
0

√
(n+2)(n+3) 0 (n+3)+(n+4) · · ·

...
...

...
...




The principal diagonal terminates with (n+k)+(n+k+1) and its next-nearest
neighbors terminate with

√
(n+ k − 1)(n+ k). It follows that

〈x2〉t = A+B cos 2ωt

with

A = 1
4

2�

mω
1
k+1

{
(k + 1)2n+

k∑
j=0

(2j + 1)
}

= 1
4

2�

mω2n
{
1 + k+1

2n

}

B = 1
4

2�

mω2 1
k+1

k∑
j=2

√
(n+ j − 1)(n+ j)

= 1
4

2�

mω2 1
k+1

√
(n− 1)n

k∑
j=2

{
1 + 1

2

(
1
n−1 + 1

n

)
j + · · ·

}
= 1

4
2�

mω2n
√

1 − 1
n
k−1
k+1

{
1 + 1

4

(
1
n−1 + 1

n

)
(k + 2) + · · ·

}

94 We are reminded by Mathematica that
∑k
j=1

√
n+ j can be expressed in

terms of the “generalized Riemann zeta function.”
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For n ) k ) 0 we therefore have

A ∼ B ∼ �

mωn = 1
2 〈x〉

2
0

So for such states

〈x2〉t = 1
2 〈x〉

2
0 + 1

2 〈x〉
2
0 cos 2ωt

= 〈x〉20 cos2ωt
= 〈x〉t · 〈x〉t (276)

It is, as I have emphasized elsewhere,86 the onset of statements of the form

〈Ap〉 = 〈A〉p, 〈AB〉 = 〈A〉〈B〉, etc.

which announces that distributions have become sharply localized (centered
moments have vanished) and we have penetrated the world of classical physics.
Comments of several sorts are now in order.

How robust is the argument which gave (276)? Given the nested design
(275), can one (consistently with normalization) assign values arbitrarily to the
complex numbers ψj ; writing ψj = rje

iϕj , can one place the point rrr anywhere
on the surface of the unit (k + 1)-sphere? Certainly not, for alternating 0’s
would bring 〈x〉t to rest at the origin. Do such contrived exceptions perhaps
comprise a “set of measure zero”? I suspect not, but. . .

If one were in possession of moments 〈xp〉0 of all orders then one could
reconstruct the numbers rj , and it would become apparent in high order that
the distribution is not exquisitely sharp, and the seeming classical mechanics
is a low-order illusion. For p > k the non-zero diagonals in Xp have moved so
far away from the principal diagonal as to become invisible to the |ψ) of (275),
with the consequence that 〈xp〉t has lost the time-dependence which classically
it retains. To phrase the issue another way: if we possessed 〈xp〉t = 〈x〉pt then
the motion of

〈x〉t and p ≡ 1
m
d
dt 〈x〉t

would present a replication of classical Hamiltonian mechanics—in seeming
violation of the uncertainty principle.

The “large quantum number” model sketched above provides no answer to
the question: How, in natural fact, would states of the specialized design (275)
come spontaneously into being? And it ignores the fact that one cannot, by any
standard account of the quantum theory of measurement, “watch” the motion
to which 〈x〉t refers, the relationship of which to the motion of the classical
oscillators (which one manifestly can watch) remains therefore obscure.95

The theory sketched above hinges critically on the double presumption
that (i) n is very large (formally: n → ∞) and (ii) k, though small, is yet not

95 Discerning critic though he was, Ehrenfest’s paper was quite brief, and the
point seems not to have concerned him.
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too small. For if the “nest” is exquisitely narrow (i.e., if the state is an energy
eigenstate, corresponding to the situation k = 0) then 〈x〉 is immobilized; to
launch 〈x〉 into motion the state vector |ψ)t—thought of as a “signal”—must
have finite bandwidth, and the associated distribution |(n|ψ)|2 must be “course-
grained,” a fat δ -function. This line of commentary places one in position to
appreciate the fundamental distinction between the present program (where the
objective is to expose the relationship between 〈x〉t and its classical counterpart
x(t)) and the more frequently encountered program96 wherein one compares
the static properties of Pn(x) ≡ |(x|n)|2 with those of the function

Qn(x) =




1
π
√
a2−x2 : −a < x < +a, with a ≡

√
2�

mω (n+ 1
2 )

0 : otherwise

= fraction of the time x(t) = a cosωt spends
in the neighborhood dx of x

The latter program culminates in figures of a sort which are which are frequently
reproduced (see Figure 16) but seldom commented upon; I take this opportunity
to draw attention to the following circumstances:

• the program is lopsided/skew insofar as it associates quantum statics with
an implication of classical dynamics

• the program—which stands with one toe on a tacit “ergodic hypothesis”—
implicitly imputes a classical mechanism to quantum statistics

• the program would have us acknowledge the similarity of curves which are
in fact not similar; which become similar only after Pn(x) has been subjected
to some kind of “local averaging”

Pn(x) → P̃n(x) =
∫

Pn(ξ)w(x− ξ) dξ

which the eye does spontaneously, but of which standard quantum theory
provides no account.97

• the 2-dimensional analog of Figure 16 is disappointingly uninformative:
Q(x1, x2) reflects the shape of the “bounding box,” but is insensitive to relative
phase (so is common to all elliptical orbits inscribed within a given bounding
box), while only one product wave function fits within any given bounding box;
in Stokes’ terminology, the construction has things to say about S0 and S1, but
nothing about S2 or S3.
In short: the line of argument which yielded Figure 16 provides yet further
evidence that hints/anticipations of classical mechanics can be detected even
deep within the quantum realm, but poses more questions than it resolves.

96 See, for example, Schiff’s Quantum Mechanics (3rd edition ) Fig. 11;
D. Griffiths’ Introduction to Quantum Mechanics () Fig. 2.5; quantum
mechanics () Chapter 2, pp. 74 et seq.

97 In this connection see J. L. Powel & B. Crasemann, Quantum Mechanics
(), p. 137.
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Figure 16: In terms of the dimensionless variable y ≡
√
mω/	x

the oscillator eigenfunctions (x|n) can be described

hn(y) = 1√
2nn!

√
π
HermiteH[n,y]Exp[- 1

2y
2]

Superimposed in the figure are P24(x) and the associated Q24(y).

Textbooks describe also an alternative—and for our purposes more
informative—way to relate the quantum mechanics to the classical mechanics of
an oscillator. The idea—which according to Schiff was original to Schrödinger
himself ()—is to assign ψ(x, 0) a design consistent with the statement

|ψ(x, 0)|2 = 1√
2πε

e−
1
2ε (x−a)2

= normalized Gaussian

and then to watch the motion of |ψ(x, t)|2. This is standardly accomplished
either by writing98

ψ(x, t) =
∑

cne
−i(n+ 1

2 )ωtψn(x)

cn =
∫

ψn(x′)ψ(x′, 0) dx′

or by writing99

ψ(x, t) =
∫

K(x, t;x′, 0)ψ(x′, 0) dx′

98 See, for example, Schiff pp. 74–76 for the details.
99 See quantum mechanics () Chapter 2, p. 93.
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with

K(x, t;x′, 0) =
∑

ψn(x)ψn(x′)e−i(n+ 1
2 )ωt

=
√

mω
2πi� sinωt exp

{
− mω

2i� sinωt

[
(x2 + x′2) cosωt− 2xx′

]}
I proceed here in language appropriate a third method (which, however, I will
not attempt to develop in detail). The time-dependent Schrödinger equation
of an oscillator reads

−ϕyy + y2ϕ = 2iϕu (277)

when written in dimensionless variables y =
√
mω/	x and u = ωt. To develop

a general theory of “dispersionless oscillator wavepackets” one would proceed
from the weakest assumption

ϕ(y, u) = F (y − b cosu)eif(y,u) (278)

sufficient to insure that

|ϕ(y, u)|2 = F 2(y − b cosu)

oscillates rigidly/classically (with amplitude b, angular frequency ω); the plan
might be to specify F (•) arbitrarily, then require, as a condition on f(y, u),
that the ϕ of (278) satisfies (277). Here I must be content to observe that Schiff
takes F =

√
displaced Gaussian, but not just any Gaussian: to avoid notational

clutter he takes

ϕ(y, 0) = h0(y − b) : displaced ground state

=
(

1
π

) 1
4 e−

1
2 (y−b)2

and computes (as Mathematica confirms) cn = bne−
1
4 b

2
/
√

2nn!, which is readily
shown to entail

ϕ(y, u) = Feif with
{
F = h0(y − b cosu)
f(y, u) = − 1

2u− by sinu+ 1
4b

2 sin 2u

which (by quick calculation) does in fact satisfy the Schrödinger equation (277).
The resulting probability density is the “sloshing Gaussian” shown in Figure 17.
We note that the second harmonic is present in f , but absent from F . And
that ϕ(y, u) → h0(y) · e−

1
2u as b ↓ 0: the ground state “buzzes with zero-point

frequency” and |ϕ(y, u)|2 has become an immobilized Gaussian. As amplitude
b increases, progressively larger quantum numbers n become prominent in the
development

ϕ(y, u) =
∑

cne
−i(n+ 1

2 )uhn(y) = h0(y − b cosu) · ei(phase function)

Schiff, in that connection, observes that (in Stirling approximation)

log cn = n
(
log b− 1

2 log 2
)
− 1

2 log n! − 1
4b

2

≈ n
(
log b− 1

2 log 2
)
− 1

2

{
log

√
2π + (n+ 1

2 ) log n− n
}
− 1

4b
2
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Figure 17: One frame from the animated graphic generated by

h[n ,y ]:= 1√
2nn!

√
π
HermiteH[n,y] Exp[- 1

2y
2]

g[y ,u ]:=h[0,y-3Cos[u]]

Animate[Plot[g[y,u], {y,-6,+6}, PlotRange->{0,0.6}],
{u,0,2π}]

and set into sloshing motion by opening the Cell menu and clicking
on Animate Selected Graphics.

becomes maximal at

nmax(b) = 1
2b

2
(
1 − 1

b2 + · · ·
)
≈ 1

2 (b2 − 1) (279.1)

b ≡
√
mω
�
·(literal amplitude a)

This—gratifyingly if not surprisingly—is precisely the n -value which follows
from writing En = 	ω(n+ 1

2 ) = 1
2mω2a2. Expansion about nmax gives

cn ≈
(

1
πb2

) 1
4 exp

{
− 1

2

[n− nmax

b

]2}
(279.2)

These results are illustrated in Figures 17 and 18.

It is clear (especially from the latter figure) that the preceding discussion
has much in common with that which proceeded from (275). The general lesson,
once again, it that to launch first moments into motion the quantum state must
be of the form

|ψ) = |eigenfunction) +
∑

|nest of neighboring eigenfunctions)
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Figure 18: Graphs of

cn(b) = bne−
1
4 b

2
/
√

2nn!

in the cases b = 10, 20, 30. The peaks become shorter but fatter as
b increases. The peaks are placed at

nmax(b) ≈ 1
2 (b2 − 1) =

{ 49.5
199.5
449.5

respectively, and have

altitudes ≈
(

1
πb2

)1
4 =

{ 0.2375
0.1680
0.1371

The central peak is actually a superposition of the exact curve and
its approximant (279.2); the fit is already spectacular at b = 20, and
gets rapidly even better as the dimensionless amplitude b increases.

and that to successfully mimic classical physics the mean quantum number
must be large. I elaborate upon the latter remark as it pertains to the “sloshing
groundstate:” From the circumstance that

ψ(x, t) = ψ0(x− a cosωt) · ei(phase function)

⇓
P (x, t) = |ψ0(x− a cosωt)|2 moves “rigidly”

it follows that the centered moments of all orders are constant in time. In
particular, one has

〈(x − 〈x〉t)2 〉t = 〈x2〉t − 〈x〉2t = constant
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From the specific Gaussian design of

P (x, t) =
√
mω
π�

exp
{
mω
�

(x− a cosωt)2
}

(280)

it follows that “constant”= 	/2mω. So the “sloshing groundstate” provides

〈x2〉t = 〈x〉t · 〈x〉t + 1
2 (zero-point amplitude)2 (281)

and we penetrate the “classical realm” when circumstances (E ) 	ω, or
equivalently: a )

√
	/mω ) permit neglect of the additive term.

All of which, though phrased in reference to the one-dimensional oscillator,
pertains mutatis mutandis (and with very little mutatis) to the quantum physics
of two-dimensional oscillators, and in particular to the isotropic oscillator. We
retain the insight that if the first moments are to be launched into (necessarily
elliptical) motion the state must present a superimposed “nest” of eigenstates,
and in the “sloshing groundstate” (see the following figure)

ϕ(y1, y2, u; b1, b2, δ) =ϕ(y1, u; b1) · ϕ(y2, u+ δ; b2) (282)

ϕ(y, u; b) = h0(y − b cosu)ei
{
− 1

2u−by sinu+ 1
4 b

2 sin 2u
}

h0(y) =
(

1
π

)1
4 e−

1
2y

2

possess an analytically tractable (yet representative?) instance of such a state.
We know from first principles that the “mechanical Stokes operators” Sµ
introduced at (264) commute with the oscillator Hamiltonian H = 2mω2S0,
and therefore that the numbers Sµ ≡ (ψ |Sµ|ψ) remain constant whenever |ψ)
moves as stipulated by the Schrödinger equation. We find ourselves in position
now (at last!) to inquire in some detail into the question which motivated this
entire discussion: What do the numbers Sµ have to say about the design of the
“quantum orbit” associated with the state |ψ)?

The operators a and b acquire the representations

a = 1√
2

(
y + ∂

∂y

)
b = 1√

2

(
y − ∂

∂y

)
in terms of which (262) become

Σ0 = 1
2

{(
y − ∂

∂y

)
1

(
y + ∂

∂y

)
1

+
(
y − ∂

∂y

)
2

(
y + ∂

∂y

)
2

}
Σ1 = 1

2

{(
y − ∂

∂y

)
1

(
y + ∂

∂y

)
1
−

(
y − ∂

∂y

)
2

(
y + ∂

∂y

)
2

}
Σ2 = 1

2

{(
y − ∂

∂y

)
1

(
y + ∂

∂y

)
2

+
(
y − ∂

∂y

)
2

(
y + ∂

∂y

)
1

}
Σ2 = i 12

{(
y − ∂

∂y

)
1

(
y + ∂

∂y

)
2
−

(
y − ∂

∂y

)
2

(
y + ∂

∂y

)
1

}
Equivalent, but computationally more useful, are the statements
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Figure 19: Representation of the isotropic analog of a “sloshing
groundstate.” A displaced copy of the groundstate moves rigidly/
classically along an elliptical orbit.

Σ0 = 1
2

{
− ∂2

1 + y2
1

}
+ 1

2

{
− ∂2

2 + y2
2

}
− 1

Σ1 = 1
2

{
− ∂2

1 + y2
1

}
− 1

2

{
− ∂2

2 + y2
2

}
Σ2 = y1y2 − ∂1∂2

Σ3 = i
{
y1∂2 − y2∂1

}




(283)

In the one-dimensional case Mathematica, given ϕ = ϕ(y, u; b), supplies

〈y 〉 = +b cosu

〈y2〉 = 1
2 + b2 cos2 u

〈−i∂ 〉 = −b sinu

〈−∂2〉 = 1
2 + b2 sin2 u

whence 〈−∂2 + y2〉 = 1 + b2. Returning with this information to (283), and
taking the wave function to be the sloshing groundstate (282), we obtain



“Quantum orbits” in the oscillator problem 127

Σ0 ≡ (ϕ|Σ0|ϕ) = 1
2 (1 + b21) + 1

2 (1 + b22) − 1

= 1
2 (b21 + b22) (284.0)

Σ1 ≡ (ϕ|Σ1|ϕ) = 1
2 (b21 − b22) (284.1)

Σ2 ≡ (ϕ|Σ2|ϕ) = b1b2
{
cosu cos(u+ δ) + sinu sin(u+ δ)

}
= b1b2 cos δ (284.2)

Σ3 ≡ (ϕ|Σ2|ϕ) = b1b2 sin δ (284.3)

So if we introduce Stokes operators by means of the modified definitions100

Sµ ≡ 2�

mωΣµ : physical dimension of (length)2 (285)

we have
(ϕ|S0|ϕ) = a2

1 + a2
2

(ϕ|S1|ϕ) = a2
1 − a2

2

(ϕ|S2|ϕ) = 2a1a2 cos δ
(ϕ|S3|ϕ) = 2a1a2 sin δ


 (286)

But these are precisely the Stokes parameters which in classical theory we would
associate with the ellipse traced

x1(t) = a1 cos(ωt)
x2(t) = a2 cos(ωt+ δ)

by the center of the sloshing groundstate. Though any other result would have
been perplexing, it remains nonetheless remarkable that we have been able to
express those numbers as expectation values (and thus to realize—at least in
this special case—an objective stated on p. 111). Manifestly

(ϕ|S0|ϕ)2 − (ϕ|S1|ϕ)2 − (ϕ|S2|ϕ)2 − (ϕ|S2|ϕ)2 = 0 (287)

and we can on this basis assert that the sloshing groundstate is (in language
borrowed from optics) “100% polarized:”

√
(ϕ|S1|ϕ)2 + (ϕ|S2|ϕ)2 + (ϕ|S2|ϕ)2

(ϕ|S0|ϕ)
= 1 (288)

How robust are the results exposed by the sloshing groundstate? It is to
gain insight into that question that we look now to the expectation values of

100 Note that the operators Sµ differ not only notationally but also in small
details from the operators Sµ introduced at (264). We are in position now
to appreciate the wisdom implicit in Jauch & Rohrlich’s management of the
“zero-point energy term.”
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Sµ in cases where the state is an energy eigenstate: |n1, n2)e−
i
�
(n1+n2+1)ωt. We

work from (262) with the aid of

a1|n1, n2) =
√
n1 |n1 − 1, n2),

b1|n1, n2) =
√
n1 + 1 |n1 + 1, n2),

a2|n1, n2) =
√
n2 |n1, n2 − 1)

b2|n1, n2) =
√
n2 + 1 |n1, n2 + 1)

and (to avoid the clutter of temporal factors which in the end disappear) agree
to set t = 0. Quick calculation gives

S0 = 2�

mω (n1, n2|Σ0|n1, n2) = 2�

mω (n1 + n2)

S1 = 2�

mω (n1, n2|Σ1|n1, n2) = 2�

mω (n1 − n2)

S2 = 2�

mω (n1, n2|Σ2|n1, n2) = 0

S3 = 2�

mω (n1, n2|Σ3|n1, n2) = 0




(289)

From S2
0 � S2

1 + 02 + 02 we discover that oscillator eigenstates are, in general,
only partially polarized, with

“degree of polarization” P =

√
(n1 + n2)2 − 4n1n2

n1 + n2
=

S1

S0
(290)

and become 100% polarized if and only if n1n2 = 0. We are brought thus
back to a point first remarked in connection with Figure 16: the data written
into specification of an eigenstate |n1, n2) is sufficient to set the shape of the
bounding box, but not to distinguish one from another of the ellipses thus
circumscribed (see Figure 20). And since the first moments are immobilized
there is, in fact, no well-defined quantum ellipse to be distinguished: all are
latent. We are in position now to appreciate that when Jauch & Rohrlich, with
mixed states in mind, assert91 that

100% polarization ⇒ system in a “pure” state

they do not intend the converse (which we have just seen to be generally false).

Enlarging now upon (289), we have

(m1,m2|Σ0|n1, n2) = (n1 + n2)(m1,m2|n1, n2) (291.0)
(m1,m2|Σ1|n1, n2) = (n1 − n2)(m1,m2|n1, n2) (291.1)

(m1,m2|Σ2|n1, n2) =
√

(n1 + 1)n2 (m1,m2|n1 + 1, n2 − 1)

+
√
n1(n2 + 1) (m1,m2|n1 − 1, n2 + 1) (291.2)

(m1,m2|Σ3|n1, n2) = i
{ √

(n1 + 1)n2 (m1,m2|n1 + 1, n2 − 1)

−
√
n1(n2 + 1) (m1,m2|n1 − 1, n2 + 1)

}
(291.3)

The pair of equations describe diagonal matrices, while the second pair describe
matrices which have non-zero elements only on the nearest-neighbor of the
(doubly-indexed) diagonal. Writing

|ψ) =
∑
n1,n2

|n1, n2)(n1, n2|ψ)
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Figure 20: Classical orbits “latent” in the eigenstate |n1, n2). One
has

U ≡ energy − zero-point

= 	ω(n1 + n2) = 1
2mω2S0

but—borrowing from §10 a notion more natural to optics—can also
introduce an

S ≡ “internal entropy”

= − log
{[

1
2 (1 + P )

] 1
2 (1+P )[ 1

2 (1 − P )
] 1

2 (1−P )
}

Specification of U and S is equivalent to specification of the quantum
numbers n1 and n2. I will discuss on another occasion what insight
might thus be gained.101

and using (291) to compute (ψ|Σµ|ψ), we are led the realization that just as
the components of |ψ) must be “nested” to set the first moments (ψ|x1|ψ) and
(ψ|x2|ψ) into (elliptical) motion, so must they be nested to lend non-zero values
to S2 and S3. And (setting aside the trivial case n1n2 = 0) so, finally, must
they be nested if we are to achieve the 100% polarization charactistic of the
classical motion of isotropic oscillators.

20. Transform properties of Stokes parameters. Size and figure (eccentricity)
are intrinsic properties of an ellipse, but position and orientation are relative—
relative (let us say) to a Cartesian frame which has been erected at (let us say)

101 In the meantime, see §13 in “Gaussian wavepackets” ().
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the center of the ellipse in question. It follows that the values assumed by the
Stokes parameters descriptive of the ellipse are, in some respects, contingent
upon prior specification of the reference frame. Specifically, frame-rotation (see
the following figure) entails

X2
1 + X2

2 = X′
1
2 + X′

2
2 : size-invariance, the upshot of Figure 2

χ = χ ′ : figure-invariance
ψ = ψ ′ + θ

from which, working from (20), we obtain

S0 = S′
0

S1 = S′
1 cos 2θ − S′

2 sin 2θ
S2 = S′

1 sin 2θ + S′
2 cos 2θ

S3 = S′
3


 (292)

In short (see again the lower portion of Figure 3): rotation of the reference
frame induces rotation (through the doubled angle) about the 3-axis in Stokes
space.

If one had not geometry but physics—classical oscillators or lightbeams—
in mind when one drew the ellipse in Figure 21 then it would be natural to
write

X1 cos(ωt+ δ1) = X′
1 cos(ωt) · cos θ − X′

2 cos(ωt+ δ′) · sin θ
X2 cos(ωt+ δ2) = X′

1 cos(ωt) · sin θ + X′
2 cos(ωt+ δ′) · cos θ

and to develop the implied description of X1, X2 and δ ≡ δ2 − δ1 in terms of
X′

1, X′
2 and δ′. This was, in fact, done already in §2, where we were led to

equations of disappointing complexity—equations which at (32) led us to our
first anticipation of (292), and which, by reversal of our former procedure, might
now be recovered directly from (292). It is in that context that I consider now
this question: What would be the state of affairs if we had quantum oscillators
in mind?

The energy eigenvalues of an isotropic oscillator can be described

En = (n+ 1)	ω with n = n1 + n2

and are (n+ 1)-fold degenerate, the associated eigenstates being

|n, 0), |n− 1, 1), |n− 2, 2), . . . , |2, n− 2), |1, n− 1), |0, n)

The dimensionless space representation of the groundstate can, as previously
remarked, be described

h0,0(y1, y2) ≡ (y1, y2|0, 0) =
(

1
π

)2
4 e−

1
2 (y21+y22)



Transform properties of Stokes parameters 131

χ ψ
ψ

θ

Figure 21: Modification of the upper portion of Figure 3, into
which has been introduced a rotated copy of the original Cartesian
frame:

x1 = x′
1 cos θ − x′

2 sin θ
x2 = x′

1 sin θ + x′
2 cos θ

and wavefunctions representative of the excited states become

hn1,n2(y1, y2) = (y1, y2| 1√
n1!n2!

bn1
1 bn2

2 |0, 0)

= 1√
n1!n2!

[
1√
2

(
y1 − ∂

∂y1

)]n1
[

1√
2

(
y2 − ∂

∂y2

)]n2
h0,0(y1, y2)

Rotation

y1 = y′
1 cos θ − y′

2 sin θ
y2 = y′

1 sin θ + y′
2 cos θ

induces
∂1 = ∂′

1 cos θ − ∂′
2 sin θ

∂2 = ∂′
1 sin θ + ∂′

2 cos θ

whence
b1 = b′

1 cos θ − b′
2 sin θ

b2 = b′
1 sin θ + b′

2 cos θ

}
(293)

We are led thus to statements of the form

h1,0(y′
1 cos θ − y′

2 sin θ, y′
1 sin θ + y′

2 cos θ)
= cos θ · h1,0(y′

1, y
′
2) − sin θ · h0,1(y′

1, y
′
2)

h0,1(y′
1 cos θ − y′

2 sin θ, y′
1 sin θ + y′

2 cos θ)
= sin θ · h1,0(y′

1, y
′
2) + cos θ · h0,1(y′

1, y
′
2)
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which can be notated(
h1,0(yyy)
h0,1(yyy)

)
=

(
cos θ − sin θ
sin θ cos θ

)
︸ ︷︷ ︸

(
h1,0(yyy′)
h0,1(yyy′)

)

R(θ; 1) (294.1)

and in next higher order becomes
h2,0(yyy)
h1,1(yyy)
h0,2(yyy)


 =


 cos2 θ −

√
2 sin θ cos θ sin2 θ√

2 sin θ cos θ cos2 θ − sin2 θ −
√

2 sin θ cos θ
sin2 θ

√
2 sin θ cos θ cos2 θ




︸ ︷︷ ︸

h2,0(yyy′)
h1,1(yyy′)
h0,2(yyy′)




R(θ; 2) (294.2)

Equations (294) state allegations which Mathematica has explicitly confirmed.
Mathematica reports also that R(θ; 2) shares these properties with R(θ; 1):
• R(θ; 2) is a rotation matrix: RT(θ; 2)R(θ; 2) = I;
• R(θ1; 2)R(θ2; 2) = R(θ1 + θ2; 2); the matrices in question provide a 3 × 3

representation of O(2).
From

1√
(n−j)!j!

bn−j1 bj2 = 1√
(n−j)!j!

(b′
1 cos θ − b′

2 sin θ)n−j (b′
1 sin θ + b′

2 cos θ)j

= 1√
(n−j)!j!

n−j∑
p=0

(
n−j
p

)
(b′

1 cos θ)p(−b′
2 sin θ)n−j−p

·
j∑
q=0

(
j
q

)
(b′

1 sin θ)q(b′
2 cos θ)j−q

=
n∑
k=0

Rjk(θ;n)︸ ︷︷ ︸ 1√
(n−k)!k!

b′
1
n−k b′

2
k (295)

|—elements of the (n+1)×(n+1) matrix R(θ;n)

we learn how to ascend to arbitrary order, but detailed description of the matrix
elements Rij involves a degree of tedium into which I am not motivated to enter;
the exercise would, in effect, reproduce the representation theory of O(2). I
return instead to the question which motivated this discussion.

Let |ψ) refer to the state of an isotropic oscillator, and let |ψ ′) = R(θ)|ψ)
be a rotated copy of that state. The question of immediate interest is this: How
do the Stokes parameters (ψ ′|Σµ|ψ ′) of |ψ ′) relate to those of |ψ)? We are in
position to pursue two distinct approaches to the problem. We might write

|ψ) =
∑
n

|ψn)

|ψn) ≡
n∑
p=0

|n− p, p)(n− p, p|ψ) ∈ nth energy eigenspace
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and exploit recently-acquired information about how R(θ) acts within each such
eigenspace. This, however, would be the long way around the bush; it would
be much simpler and more informative to write

(ψ ′|Σµ|ψ ′) = (ψ|RT(θ)ΣµR(θ)|ψ) = (ψ|Σµ
′ |ψ)

and to study the relationship of Σµ
′ to Σµ; this is a relatively simple matter,

and can be pursued independently of any reference to the specific structure of
the state vector |ψ). Bringing (293) and their adjoints to (262), we obtain

Σ0 = (b′
1 cos θ − b′

2 sin θ)(a′
1 cos θ − a′

2 sin θ)
+ (b′

1 sin θ + b′
2 cos θ)(a′

1 sin θ + a′
2 cos θ)

= b′
1a

′
1 + b′

2a
′
2

= Σ0
′ (296.0)

Σ1 = (b′
1 cos θ − b′

2 sin θ)(a′
1 cos θ − a′

2 sin θ)
− (b′

1 sin θ + b′
2 cos θ)(a′

1 sin θ + a′
2 cos θ)

= (b′
1a

′
1 − b′

2a
′
2) cos 2θ − (b′

1a
′
2 + b′

2a
′
1) sin 2θ

= Σ1
′ cos 2θ − Σ2

′ sin 2θ (296.1)

Σ2 = (b′
1 cos θ − b′

2 sin θ)(a′
1 sin θ + a′

2 cos θ)
+ (b′

1 sin θ + b′
2 cos θ)(a′

1 cos θ − a′
2 sin θ)

= (b′
1a

′
1 − b′

2a
′
2) sin 2θ + (b′

1a
′
2 + b′

2a
′
1) cos 2θ

= Σ1
′ sin 2θ + Σ2

′ cos 2θ (296.2)

Σ3 = i(b′
1 cos θ − b′

2 sin θ)(a′
1 sin θ + a′

2 cos θ)
− i(b′

1 sin θ + b′
2 cos θ)(a′

1 cos θ − a′
2 sin θ)

= i(b′
1a

′
2 − b′

2a
′
1)

= Σ3
′ (296.3)

From (296) we learn that the quantum mechanical Stokes parameters (ψ|Σµ|ψ)
respond—for every |ψ)—to frame-rotation in precise imitation of the equations
(292) to which we were led geometrically/classically. This remark pertains even
to states with which no precisely-drawn ellipse can be associated,102 in which
connection we notice that

polarization P =

√
Σ2

1 + Σ2
2 + Σ2

3

Σ0
is a rotational invariant

An overt geometrical symmetry of the isotropic oscillator—the rotational
symmetry, commonly expressed [H, L3] = 0—has found expression in (296) as a

102 Included in this broad category are the eigenstates |n1, n2), which were
seen at (289/290) to be only partially polarized unless n1n2 = 0.
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symmetry (with respect to rotation about the S3-axis) of the Poincaré sphere.
But the symmetry group of the sphere is O(3), not O(2). The “extra symmetry”
can be associated with “hidden symmetry” of the dynamical system, by the
following line of argument:

The nth energy eigenspace Hn of the 2-dimensional isotropic oscillator
is, as has been remarked, (n+ 1)-dimensional—big enough to support faithful
representations of U(1), U(2), . . . ,U(n+1). To say the same thing another way:
if

{
|n − j, j) : j = 0, 1, 2, . . . , n

}
is an orthonormal basis in Hn as previously

described, and if
{
|i) : i = 0, 1, 2, . . . , n

}
is any other orthonormal basis, then

the (n + 1) × (n + 1) matrix U with elements U ij ≡ (i |n − j, j) is necessarily
unitary. A total of (n+1)2 adjustable parameters enter into the specification of
U, but only one (θ) into the design of the R(θ;n) to which U reduces by stark
specialization.

Familiarly, the general element of U(2) can be described

U = eiϕ·S

S ≡ S(α, β; 1) ≡
(

α β
−β∗ α∗

)
: general element of SU(2)

where ϕ is real and α, β are complex numbers subject to the unimodularity
constraint α∗α+ β∗β = 1. Suppose, in this light, we were in place of (292), to
write

b1 = α b′
1 + β b′

2

b2 = −β∗b′
1 + α∗b′

2

⇓
a1 = α∗a′

1 + β∗a′
2

a2 = −β a′
1 + α a′

2




(297)

We would then be in position to describe any adjustment of the form

orthonormal basis −→ orthonormal basis

within H1, and by equations of the form103


1√
2!0!

b2
1b

0
2

1√
1!1!

b1
1b

1
2

1√
0!2!

b0
1b

2
2


 =




α2 √
2αβ β2

− √
2αβ∗ (α∗α− β∗β) √

2βα∗

β∗2 −√
2α∗β∗ α∗2




︸ ︷︷ ︸




1√
2!0!

b′
1
2b′

2
0

1√
1!1!

b′
1
1b′

2
1

1√
0!2!

b′
1
0b′

2
2




S(α, β; 2)

would set up “echos” of that adjustment within H2,H3,. . . By computation
(consigned to Mathematica) we discover that S(α, β; 2) is unimodular

det S(α, β; 2) = (α∗α+ β∗β)3 = 1

103 The following equation is an enlargement upon the essence of (294.2), which
can be recovered as a special case, and by generalization one is led to a similar
enlargement upon (295).
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and unitary
S†(α, β; 2) S(α, β; 2) = I

and, moreover, that such matrices compose by a rule

S(α1, β1; 2) S(α2, β2; 2) = S(α1α2 − β1β
∗
2 , α1β2 + β1α

∗
2; 2)

which precisely mimics that of S(α, β; 1):

S(α1, β1; 1) S(α2, β2; 1) = S(α1α2 − β1β
∗
2 , α1β2 + β1α

∗
2; 1) (298)

We anticipate on this basis that the matrices S(α, β;n) could be shown to
provide an (n + 1)-dimensional unimodular unitary representation of SU(2).
Finally, we introduce (297) into (262) and obtain an enlargement upon (296)

Σ0 = (ᾱα+ β̄β)Σ0
′

Σ1 = + (ᾱα− β̄β)Σ1
′ + (αβ̄ + βᾱ)Σ2

′ − i(αβ̄ − βᾱ)Σ3
′

Σ2 = − (αβ + ᾱβ̄)Σ1
′ + 1

2 (α2+ ᾱ2− β2− β̄2)Σ2
′ − i 12 (α2− ᾱ2+ β2− β̄2)Σ3

′

Σ3 = −i(αβ − ᾱβ̄)Σ1
′ + i 12 (α2− ᾱ2− β2+ β̄2)Σ2

′ + 1
2 (α2+ ᾱ2+ β2+ β̄2)Σ3

′

which can be abbreviated


Σ0

Σ1

Σ2

Σ3


 =




1 0 0 0
0 R1

1 R1
1 R1

1

0 R2
1 R2

2 R2
3

0 R3
1 R3

2 R3
3







Σ0
′

Σ1
′

Σ2
′

Σ3
′


 (299)

Computation shows the real 3× 3 matrix R(α, β) ≡ ‖Rij(α, β)‖ to be a proper
rotation matrix, and to compose by the rule

R(α1, β1) R(α2, β2) = R(α1α2 − β1β
∗
2 , α1β2 + β1α

∗
2)

A little experimentation, inspired by remarks which assume importance in §3
of “Algebraic theory of spherical harmonics” (), leads finally to the curious
observation that R(α, β) can be described

R(α, β) = C†S(α, β; 2)C with C ≡ 1√
2


 0 i 1

−√
2i 0 0

0 −i 1




We have been led back once again to the familiar association

SU(2) ←←→ O(3) i.e. ± S(α, β; 1) ←→ R(α, β)

but now in a somewhat unfamiliar setting: we have found that when the
respective components |ψn) of the isotropic oscillator state

|ψ) =
∑
n

|ψn) with |ψn) ∈ Hn
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are adjusted in concerted response to (vi) (which is to say: in representation of
SU(2)) then the Stokes parameters (ψ|Σµ|ψ) experience a rotation—namely,
the rotation of which

{
α, β

}
are the so-called “Cayley-Klein parameters.” More

interesting is the fact that although

angular momentum of isotropic oscillator = integer · 	

the theory as a whole provides an embodiment of the quantum theory of spin
(spinor representations of the rotation group). It becomes plausible in this
light to anticipate that ladder operators borrowed from oscillator theory can
be made to support a systematic account of the quantum theory of angular
momentum, and no surprise to discover that Julian Schwinger once proceeded
down precisely that road;104 a “hidden symmetry” has in this instance become
the symmetry of principal interest, and has been pressed into fruitful service.

21. Quantum mechanical Foucault pendulum and geometric phase. Formally
(and superficially), light beams and isotropic oscillators appear to have much
in common. But to position oneself at xxx interpret the wavefunction ψ(xxx, t)
—whether of an oscillator or of any quantum system—as a “signal” one would
have to suspend the quantum theory of measurement. One might be tempted
to associate an ensemble of such wave functions with a “stream of photons,”
but the photon is a slippery beast, found to be the slipperier the more closely
it is examined.105 Nevertheless. . . the classical theory of monochromatic light
beams gave us Pancharatnam’s phase (§8), and it seems plausible that the
classical/quantum mechanics of isotropic oscillators might support an analogous
notion. That is the question I propose now to explore.

Of course, mention of “geometrical phase” in connection with a quantum
mechanical problem brings first to mind “Berry’s phase.” David Griffiths has
given a useful introductory account of that subject,106 but introduces that
discussion with an account of the “Foucault pendulum problem” which derives
some of its substantial interest from the circumstance that it has, in fact, little
to do either with Berry’s phase or with its classical analog (“Hannay’s phase”).
The latter (see the following figure) refer to the temporal phase shifts which
typically result from adiabatic transport around loops drawn in parameter space
(the space of parameters which enter into the design of the Hamiltonian), while
the former refers to the adjusted orbital orientation—the “orbital phase” I will
call it, to achieve a kind of terminological symmetry—which typically results
from adiabatic transport around loops drawn in physical space. Temporal phase
shifts may, indeed, result from “Foucault processes,” but (in the presence of
orbital adjustment become somewhat problematic to define, and in any event)

104 “On angular momentum,” U. S. Atomic Energy Commission Publication
NYO-3071 ().
105 See Chapters 10–12 in L. Mandel & E. Wolf, Optical Coherence & Quantum
Optics ().
106 Introduction to Quantum Mechanics (), §10.2.
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comprise an aspect of the “Foucault problem” to which Foucault107 himself
paid no observational attention.

A word about Hannay’s accomplishment before we get on with our main
work: Hannay’s objective108 was to identify a direct classical analog of Berry’s
phase. In imitation of Berry’s assumption (sufficient in itself to exclude isotropic
oscillators, except in their ground states) that the quantum system under
discussion is in a non-degenerate eigenstate, Hannay looks to classical systems
with only a single cyclic degree of freedom (which—if for a different reason—
again excludes isotropic oscillators). With Berry, he contemplates loop-like
adiabatic “excursions in the space of control parameters,” and looks for the
consequent adjustment in the temporal phase of the system (see the following
figure). The possibility of an “orbital phase” Hannay was careful to exclude by
initial presumption, the better to expose the effect of interest to him. On the
other hand, “orbital phase” was precisely and exclusively the effect of interest to
Foucault; “temporal phase” is a detail which Foucault was tacitly content to set
aside (as also, in another connection but at about the same time, was Stokes),
and concerning which Griffiths has, in fact, nothing to say.109 Griffiths’ allusion
to “Hannay phase” is misguided; the value of his remarks lies elsewhere.

107 Jean Bernard Léon Foucault (–)—son of a bookseller, small and
frail—had been an indifferent student, but developed into an experimentalist
of exceptional skill, and an influential popular expositor of science. In many
respects his career reminds one of Michael Faraday. During the ’s he, with
his frequent collaborator Fizeau, did pioneering work in astrophotography. In
the early ’s they were both concerned with benchtop measurements of the
speed of light (in air, water). The “Foucault pendulum” was a by-product of an
attempt () to place a conical pendulum at the heart of a telescope drive,
and was followed a year later by the invention of the gyroscope; both permitted
benchtop study of the earth’s rotation, and stimulated the further development
of theoretical mechanics. (The theory of the Foucault pendulum had been
worked out already in  by Poisson, who, however, considered the effect to
be unobservably small.) Foucault also invented techniques for producing and
testing telescope mirrors which have become classic.
108 J. H. Hannay, “Angle variable holonomy in adiabatic excursion of an
integrable Hamiltonian,” J. Phys. A: Math. Gen. 18, 221 (1985), reprinted
at p. 426 in Shapere & Wilczek. Hannay was a colleague of Berry’s at the
University of Bristol. His work is couched in the language of Hamilton-Jacobi
theory (action and angle variables), which has been recognized since early
in the century (Lorentz, Einstein, Ehrenfest & Bergers; see Max Jammers,
The Conceptual Development of Quantum Mechanics (), §3.1) to be the
language of choice for discussion of classical adiabatic approximation theory.
Hannay’s work was elaborated (in advance of publication) by Berry himself:
“Classical adiabatic angles and quantal adiabatic phase,” J. Phys. A: Math.
Gen. 18, 15 (1985), reprinted at p.436 in Shapere & Wilczek.
109 Relative temporal phase lies, on the other hand, at the heart of the issue
addressed by Pancharatnam.



138 Ellipsometry

Figure 22: Hannay’s problem. In upper left, a bead (more usefully:
a population of beads) slides on a wire loop. At upper right, a copy
of the system is adiabatically deformed, but returns ultimately to its
original design. The problem: what is the phase of the population
at lower right relative to that of the population (lower left) which
has experienced no such adventure?

My objective in the following remarks is to proceed stepwise to a deepened
statement of “Foucault’s problem,” and to indication of how Griffiths proposes
to “geometrize” the problem. Let the earth’s rotation be, for the moment,
suspended. Picture Jean Foucault, as he
• makes a daguerreotype record of the orbit being traced by his pendulum;
• hikes—pendulum in hand—slowly and with exquisite care about the French

countryside;
• returns to his Parisian laboratory, where he compares the orbit-at-return

with the recorded orbit-at-departure.
(Griffiths, for his own mathematical convenience, would have Foucault hike
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straight south from the North Pole to the equator, then along the equator to
a point of different longitude, then return straight north to the pole, where he
would compare the orbit of the pendulum in hand to the orbit which he had
traced on the ice, prior to his departure. Foucault himself chose simply to sit
in his laboratory, and let the rotating earth transport him along a circle of
constant latitude; by this strategy he was able, with much reduced effort, to
monitor the precession of his pendulum; i.e., to observe its temporal progress
from initial to final orientation.) Foucault’s conical pendulum is, by careful
design, an isotropic oscillator, activated by gravity. If activated internally, by
an isotropic spring, then gravity could be “turned off;” in hiking about the
French countryside Foucault, if he sought to duplicate his former experiment,
would then have to exercise care to keep the oscillatory plane always tangent
to the (former) geosphere. We, a century and a half later, might contemplate
doing a similar thing here in the laboratory with a quantum oscillator, tangently
transported around a loop inscribed (not necessarily on a sphere, but) on an
arbitrary surface (fender of an automobile).110

Griffiths, on the intuitively compelling evidence of a class of special cases
(Figure 23), considers it to be self-evident that

adiabatic transport =⇒ parallel transport (300)

and in support of that proposition advances what he calls a “purely geometrical
interpretation” of the familiar Foucault precession formula—a formula which, as
he correctly remarks, is “ordinarily obtained by appeal to Coriolis forces in the
rotating reference frame.”111 But whatever may be the intuitive appeal of (300),
and its effectiveness in special cases, it stands at the moment as a bald assertion.
We have acquired an obligation to inquire into the physical credentials of (300).
This Griffiths—in hot pursuit of Berry phase—does not linger to do; this I now
undertake to do. On the right we encounter a mathematical notion which is
secure but non-trivial,112 and on the left a physical notion which, to a surprising
degree, remains elusive; Griffiths (in his §10.1.2) works within a context so
sharply defined as to permit him to speak of an “adiabatic theorem,” but

110 At a still higher level of abstraction—abandoning on the one hand the
distinguishing physical features of isotropic oscillators and, on the other, the
distinguishing geometrical features of loops inscribed on surfaces—we might
imagine ourselves to be in possession of two identical physical systems in initally
identical states, might take one of those systems on an adiabatic excursion, and
ask: How do the states of the two systems compare when they are brought back
together?
111 See, for example, J. B. Marion, Classical Dynamics of Particles & Systems
(2nd edition ), p. 355; or T. W. B. Kibble, Classical Mechanics (2nd edition
), §5.4.
112 I refer to the Gauss-Bonnet theorem, concerning which Gauss () wrote
that “this theorem, if I mistake not, ought to be counted among the most elegant
in the theory of curved surfaces.”
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ϕ

Figure 23: “Griffiths’ tour:” a pendulum is transported very gently
(which is to say: adiabatically)
• from North Pole to equator;
• from equatorial point to an equatorial point of different longitude
(let ϕ denote the longitudinal difference);

• back to the North Pole
of a non-rotating earth.

Hannay, citing the experience of V. I. Arnold,113 was careful to emphasize that
while “. . . the adiabatic principle is well defined and widely realized physically,
it appears to be surprisingly difficult to eliminate the mathematical loopholes
which prevent the simple statement that it holds rigorously in the limit of slow
change.” Einstein, in recognition of this circumstance, prefered to speak of the
“adiabatic hypothesis,” the validity of which Hannay is prepared to “take for
granted.” It is in an effort to clarify aspects of the situation that I look now to
the dynamical details of a couple of simple systems.

Look first to the system described in Figure 24. From

X = R cos θ − y sin θ
Y = R sin θ + y cos θ

}
(301)

we obtain
Ẋ = −Rθ̇ sin θ − yθ̇ cos θ − ẏ sin θ

Ẏ = +Rθ̇ cos θ − yθ̇ sin θ + ẏ cos θ

}
(302)

113 V. I. Arnold, Mathematical Methods of Classical Mechanics (2nd edition
), Chapter 10. It was, by the way, from Arnold that Hannay borrowed his
figure.
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R

X

Y

θ

Figure 24: A particle of mass m is constrained to move on a
line tangent to a circle. It is attached by a spring to the point of
tangency, and that point moves under external control θ(t). The
system has a single degree of freedom, which is taken to be

y ≡ distance from point to tangency to the mass point

The radius R is held constant, though it could be promoted to the
status of a control parameter.

giving
Ẋ2 + Ẏ 2 = ẏ2 + 2Rẏ θ̇ + (R2 + y2)θ̇2 (303)

So the Lagrangian becomes

L = 1
2m(ẏ2 − ω2y2) + 1

2mθ̇2 y2︸ ︷︷ ︸ +mRθ̇ ẏ︸ ︷︷ ︸ + 1
2mR2θ̇2︸ ︷︷ ︸ (304)

centrifugal Coriolis gauge

and the equation of motion reads

ÿ + ω2(t)y = −Rθ̈(t) with ω2(t) ≡ ω2 − θ̇2(t) (305)

Under conditions which permit the expression on the right to be neglected,
this becomes the equation of a parametrically stimulated oscillator, concerning
which a great deal has been written.114 The effect of θ̇2 < ω2 is to “soften

114 For an excellent review, see Chapter 5 of A. H. Nayfeh & D. T. Mook,
Nonlinear Oscillations ()
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the spring” (prolong the period). If θ̇2 = ω2 holds (not just momentarily but)
constantly in time, then the motion of the particle is in effect (i.e., with respect
to its non-inertial frame) “free,” while if θ̇2 > ω2 the “effective spring” has
become repulsive.115 It seems clear, even in the absence of detailed discussion,
that (because θ̇(t) enters squared into the construction of ω2(t)) a transported
oscillator, thought of as a “clock,” always runs slow with respect to a stationary
oscillator, but that the effect evaporates in the adiabatic limit. But if we
promote R to the status of a control parameter then we have

Ẋ2 + Ẏ 2 = ẏ2 + 2Rẏ θ̇ + (R2 + y2)θ̇2 + Ṙ2 − 2Ṙ θ̇ y

giving

L = 1
2m(ẏ2 − ω2y2) + 1

2m
(
θ̇2 y2 − 2Ṙ θ̇ y

)︸ ︷︷ ︸ +mRθ̇ ẏ︸ ︷︷ ︸ + 1
2m

(
R2θ̇2 + Ṙ2

)︸ ︷︷ ︸
centrifugal Coriolis gauge

whence ÿ + ω2(t)y = −R(t)θ̈(t) and it becomes possible to contemplate loops
in parameter space; according to Hannay an effect then may survive, even in
the adiabatic limit. Such an effect, if present, would, as I have several times
emphasized, possess the character of a “temporal phase;” the system has too
few dimensions to support the notion of “orbital phase.”

While the system just considered—the “Foucault pendulum in flatland”—is
of some independent interest, is has been presented as methodological warm-up
for the discussion to which I now turn. The physical problem now before us is
described in Figure 25. To obtain the

{
x, y, z

}
-frame from the

{
X,Y, Z

}
-frame

one can proceed stepwise, as follows:
• execute a righthanded φ-rotation about the Z-axis;
• execute a lefthanded θ-rotation about the repositioned Y -axis;
• translate a distance R along the newly repositioned X-axis;
• adjust coordinate names: X ′′′ → z, Y ′′′ → x, Z ′′′ → y.

Thus—by a procedure reminiscent of that used to define Euler’s angles—do we
obtain
X
Y
Z


 =


 cosφ sinφ 0
− sinφ cosφ 0

0 0 1





 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ





 0 0 1

1 0 0
0 1 0





x
y
z +R




=


 (R + z) cos θ cosφ− y sin θ cosφ− x sinφ

(R + z) cos θ sinφ− y sin θ sinφ+ x cosφ
(R + z) sin θ + y cos θ




115 For more detailed discussion of the physics of the situation, which proceeds
from

H = 1
2m

[
p−A

]2 + 1
2m(ω2 − θ̇2)y2

A ≡ mRθ̇ : very like an electromagnetic potential

see classical mechanics (), pp. 413–418. Note that the existence of a
Hamiltonian creates the possibility of quantum mechanical treatment.
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y
z

X

Y

Z

R

θ
φ

Figure 25: Go to non-polar point
{
φ, θ

}
on a sphere of radius R.

Erect a Cartesian frame, so oriented that the x-axis points east, the
y-axis points north, the z-axis points up. The plane z = 0 is locally
tangent to the sphere, and x = y = 0 marks its point of tangency.
Let a mass m be attached to the point of tangency by an isotropic
spring. Launch φ and θ into slow motion, and require m to move
subject to the constraint z(t) = 0. We have interest in the adiabatic
properties of the “generalized Foucault pendulum” thus defined.

which, it will be observed, positions the
{
x, y, z

}
-origin at


R cos θ cosφ
R cos θ sinφ
R sin θ


—as

expected/required—and gives back (301) at x = z = φ = 0. Setting z = 0 we
find that points

{
x, y

}
on the tangent plane lie at points

X
Y
Z


 =


R cos θ cosφ− y sin θ cosφ− x sinφ
R cos θ sinφ− y sin θ sinφ+ x cosφ
R sin θ + y cos θ


 (306)

in the enveloping 3-space.

To tickle out the significance of (306) we look to a graded series of special
cases, and entrust the computational details—which can become exceedingly
laborious—to Mathematica. If, in the simplest case, φ and θ are held constant
then (306) gives

Ẋ2 + Ẏ 2 + Ż2 = ẋ2 + ẏ2
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whence L = 1
2m(ẋ2 + ẏ2)− 1

2mω2(x2 + y2), with all the familiar consequences.
To develop physics associated with first and third legs of “Griffiths’ tour”
(Figure 23) we assign time-dependence to θ and an arbitrary constant value
to the longitude φ; then

Ẋ2 + Ẏ 2 + Ż2 = ẋ2 + ẏ2 + 2Rθ̇ ẏ + (R2 + y2)θ̇2 (307.1)

gives

L = 1
2m

(
ẋ2 − ω2x2

)
+ 1

2m
(
ẏ2 − [ω2− θ̇2]y2 + 2Rθ̇ ẏ

)
+ 1

2mR2θ̇2

The resulting equations of motion

ẍ+ ω2x = 0

ÿ + [ω2− θ̇2]y = −Rθ̈

}
(307.2)

are again uncoupled , and the latter equation reproduces (305). The second
(equatorial) leg of Griffiths’ tour leads us, on the other hand, to set θ = 0 and
to assign the time-dependence to φ; then

Ẋ2 + Ẏ 2 + Ż2 = ẋ2 + ẏ2 + 2Rφ̇ẋ+ (R2 + x2)φ̇2 (308.1)

gives

L = 1
2m

(
ẏ2 − ω2y2

)
+ 1

2m
(
ẋ2 − [ω2− φ̇2]x2 + 2Rφ̇ẋ

)
+ 1

2mR2φ̇2

whence
ẍ+ [ω2− φ̇2]x = −Rφ̈

ÿ + ω2y = 0

}
(308.2)

All three legs are geodesic, and all three have been seen to give rise to the same
physics; namely, the physics to which we were led in discussion pursuant to
Figure 24.

Preceeding remarks serve to substantiate Griffiths’ intuition so far as it
relates to tours of the specialized type illustrated in Figure 23, but their true
significance lies deeper: since—by proper pre-positioning of the underlying
spherical coordinate system (which, on a non-rotating earth, is certainly our
option)—any geodesic can be taken to be “an equator” (alternatively: a great
circle of constant longitude), we have in effect established that transport along
any great circle leads to uncoupled equations of oscillator motion—equations
which in the adiabatic limit retain no reference to the non-inertiality of the local
Cartesian frame. This result serves to establish (300) for geodesic transport,
and therefore for adiabatic transport along any spline curve with geodesic
segments. . .which is (in the limit) to say: for any nice curve inscribed on the
sphere.

It would, however, be inelegant to realize Foucault’s “circle of constant
latitude” as the limit of a sequence of “geodesic polygons” (order p ↑ ∞); there
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are more efficient—and more instructive—ways to proceed: if we assign
time-dependence to φ, and a constant but now non-zero value to θ, then by
computation

Ẋ2 + Ẏ 2 + Ż2 = ẋ2 + ẏ2 + 2Rφ̇ẋ cos θ
+ 2(xẏ − yẋ)φ̇ sin θ
+ φ̇2

(
x2 + 1

2 [1 − cos 2θ]y2
)

(309)

− yRφ̇2 sin 2θ
+ 1

2R
2φ̇2[1 + cos 2θ]

which gives back (308.1) in the case θ = 0 and leads to coupled equations of
motion

ẍ+ d
dt

[
− yφ̇ sin θ +Rφ̇ cos θ

]
+

(
ω2 − φ̇2

)
x− ẏφ̇ sin θ = 0

ÿ + d
dt

[
+ xφ̇ sin θ

]
+

(
ω2 − 1

2 [1 − cos 2θ]φ̇2
)
y + ẋφ̇ sin θ = −Rφ̇2 sin 2θ

which at θ = 0 give back (308.2). The case of physical interest to Foucault
arises when φ̇ is constant; we then have

ẍ− 2 ẏ φ̇ sin θ +
(
ω2 − φ̇2

)
x = 0

ÿ + 2 ẋ φ̇ sin θ +
(
ω2 − 1

2 [1 − cos 2θ]φ̇2
)
y = −Rφ̇2 sin 2θ

}
(310)

which, in the approximation that φ̇ is small, become

ẍ− 2Ω ẏ + ω2x ≈ 0

ÿ + 2Ω ẋ+ ω2y ≈ 0

}
(311)

where Ω is the latitude-dependent constant defined Ω(θ) ≡ φ̇ sin θ. These are
precisely the equations which in most elementary texts111 stand central to the
analysis of Foucault’s problem; the standard procedure is to write

z̈ + 2iΩż + ω2z = 0

and to look for solutions of the form z(t) = Aept. From p2 + 2iΩp + ω2 = 0
one is led to p = −iΩ ± iω̃ with ω̃ ≡

√
ω2 + Ω2 ≈ ω, and to a general solution

which can (in that same adiabatic approximation) be deployed

z(t) = Xe−iΩt cosωt+ iYe−iΩt cos(ωt+ δ)

giving116

x(t) = X cos Ωt cosωt+ Y sin Ωt cos(ωt+ δ)
y(t) = −X sin Ωt cosωt+ Y cos Ωt cos(ωt+ δ)

}
(312)

116 The following equation is (for reasons having mainly to do with some
experimental conventions) usually encountered only in the “linearly polarized”
form obtained (say) by setting Y = 0, which Foucault accomplished by invention
of the clever “burned string trick.”
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Figure 26: Curve traced by (314) in the case X = 2, Y = 1, δ = π
6 ,

Ω = 1
100ω. A dot marks the launch point. Note the sense of the

precession.

Figure 26 shows a curve typical of those to which the preceding equations refer.
Equations (311) could have been obtained from this adiabatic approximation

L = 1
2m

{(
ẋ2 + ẏ2

)
− ω2

(
x2 + y2

)}
+mΩ

(
xẏ − yẋ

)︸ ︷︷ ︸ (313)

gyroscopic term

to the true Lagrangian; note that it is the “gyroscopic term” which is responsible
for the coupling (which is to say: for the precession).

The Foucault system described above completes one “trip around the
world” in time τ given by φ̇τ = 2π, so we have

diurnal precession = Ωτ = 2π sin θ (314)

Curiously, this result is indepentent of the “earth’s radius” R, and persists even
in the limit R ↓ 0.

Though we have already in hand the results we will need, I remark, before
taking leave of this subject, that we are in position now to assign arbitrary
time-dependence simultaneously to both φ and θ, and thus to transport our
oscillator—whether slowly or briskly—along an arbitrary spherical curve. We
would to led to a still more complicated variant of (309), and to correspondingly
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more complicated equations of motion, which would simplify in the adiabatic
limit but which we could not expect to be able to solve, except in favorable
cases or numerically. Geometrical phase theory derives its interest in part from
the fact that (as do conservation laws) it permits one nevertheless to say useful
general things about the solutions.

I turn now from dynamics to geometry. It is elementary that the angles
interior to a plane triangle sum to π, therefore that their complements ϑi sum
to 2π. And (by a simple argument) that

sum of exterior angles = 2π

since true for triangles, pertains also to simple p -gons (p � 2). And that angular
data supplies no information concerning the size of a plane figure. And that
parallel transport around a plane triangle (as around any closed curve inscribed
on the Euclidean plane) returns an arrow to its original position. These facts,

ϑ
ϑ

ϑ

illustrated in the preceding diagrams, derive their present interest from the
circumstance that, in the company of many others, they are special to the
Euclidean plane. For example, for a spherical triangle (bounded, or course,
by geodesics, which have become great circles) the sum of the interior angles
exceeds π, by an amount proportional to the area of the triangle;117 this classic
fact

area = R2
{
(sum of interior angles) − π

}
is, for our purposes, most conveniently expressed

sum of exterior angles = 2π − area
R2

(315)

= 2π − Ω

where Ω is the spherical angle subtended at the center of the sphere. The

“angle excess” ≡ sum of interior angles − π

= 2π − sum of exterior angles (316)
= Ω

117 Note that a “natural length” can be associated with figures inscribed on a
sphere, but none with figures inscribed on the plane.
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ϑ

ϑ

ϑ

Figure 27: Parallel propagation around a spherical triangle brings
about a

misalignment = 2π − (ϑ1 + ϑ2 + ϑ3)
= Ω : angular area

“Griffiths’ tour” (Figure 23) entails ϑ2 = ϑ3 = 1
2π , and therefore

gives a misalignment = π − ϑ1 = ϕ.

becomes manifest also as the “angular misalignment” associated with parallel
propagation around such a curve (see the preceding figure). Equation (316), by
straightforward extension, pertains also to “spherical p -gons” (p � 2), which in
the case p = 2 become “lunes;” the vertices of a lune are necessarily diametric,
and the exterior angles necessarily equal: ϑ1 = ϑ2 ≡ ϑ. Parallel propagation
around a lune (which can be thought of as two “Griffiths’ tours” joined base to
base) brings about a misalignment given by 2(π − ϑ).

The Gauss-Bonnet theorem118 comes into play when one relaxes the
requirement that the curves joining the vertices (if any) be geodesic, and permits
one to relax also the presumption that the closed curve has been inscribed on
a sphere; it is, as it relates to spheres, illustrated in Figure 28, and is for our
purposes most usefully expressed∫

C

κg ds+ Ω = 2π − (ϑ1 + ϑ2 + · · · + ϑn) (317)

118 For the stark essentials, see the Encyclopedic Dictionary of Mathematics
(), p. 1732. For an accessible account of the details, and many instructive
applications, see John McCleary, Geometry from a Differentiable Viewpoint
(), Chapter 12.
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ϑ

ϑ

ϑ

Figure 28: Gauss-Bonnet theorem, as it pertains to spheres. Arcs
—which may but need not be geodesic—are joined head to tail
(subtending exterior angles ϑi) in such a way as to yield a simple
closed curve. Let D be the enclosed region, and C ≡ ∂D denote the
bounding curve. The theorem asserts that∫

C

κg ds+
∫∫

D

K dS = 2π − (ϑ1 + ϑ2 + · · · + ϑn)

where κg is the “geodesic curvature” (for the intricate definition
consult the literature; for our immediate purposes it is sufficient
to know that along geodesics κg = 0) and K = 1

R1R2
refers to the

“Gaussian curvature.” On a sphere it is everywhere the case that
K = 1/R2, so∫∫

D

K dS = Ω : spherical angle subtended by D

For spherical triangles (bounded by geodesics, with interior angles
α, β and γ) we recover Heron’s formula

0 + Ω = 2π − ([π − α] + [π − β ] + [π − γ ]) = (α+ β + γ − π)

while for plane triangles 0 + 0 = (α+ β + γ − π) gives

α+ β + γ = π
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TOPICS YET TO BE TREATED

22. Canonical transformations generated by Stokes’ observables.

23. Stokes parameters for quantum oscillators.

24. Stokes parameters for 2-dimensional hydrogen.

25. Wavepackets in elliptical orbit.


